Search results for: liquid scintillation counter
53 Invasion of Pectinatella magnifica in Freshwater Resources of the Czech Republic
Authors: J. Pazourek, K. Šmejkal, P. Kollár, J. Rajchard, J. Šinko, Z. Balounová, E. Vlková, H. Salmonová
Abstract:
Pectinatella magnifica (Leidy, 1851) is an invasive freshwater animal that lives in colonies. A colony of Pectinatella magnifica (a gelatinous blob) can be up to several feet in diameter large and under favorable conditions it exhibits an extreme growth rate. Recently European countries around rivers of Elbe, Oder, Danube, Rhine and Vltava have confirmed invasion of Pectinatella magnifica, including freshwater reservoirs in South Bohemia (Czech Republic). Our project (Czech Science Foundation, GAČR P503/12/0337) is focused onto biology and chemistry of Pectinatella magnifica. We monitor the organism occurrence in selected South Bohemia ponds and sandpits during the last years, collecting information about physical properties of surrounding water, and sampling the colonies for various analyses (classification, maps of secondary metabolites, toxicity tests). Because the gelatinous matrix is during the colony lifetime also a host for algae, bacteria and cyanobacteria (co-habitants), in this contribution, we also applied a high performance liquid chromatography (HPLC) method for determination of potentially present cyanobacterial toxins (microcystin-LR, microcystin-RR, nodularin). Results from the last 3-year monitoring show that these toxins are under limit of detection (LOD), so that they do not represent a danger yet. The final goal of our study is to assess toxicity risks related to fresh water resources invaded by Pectinatella magnifica, and to understand the process of invasion, which can enable to control it.
Keywords: Cyanobacteria, freshwater resources, Pectinatella magnifica invasion, toxicity monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188252 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid
Authors: P. G. Siddheshwar, T. N. Sakshath
Abstract:
In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.Keywords: Nanoliquid, rigid-rigid, rotation, single-phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101651 Rigorous Modeling of Fixed-Bed Reactors Containing Finite Hollow Cylindrical Catalyst with Michaelis-Menten Type of Kinetics
Authors: Mohammad Asif
Abstract:
A large number of chemical, bio-chemical and pollution-control processes use heterogeneous fixed-bed reactors. The use of finite hollow cylindrical catalyst pellets can enhance conversion levels in such reactors. The absence of the pellet core can significantly lower the diffusional resistance associated with the solid phase. This leads to a better utilization of the catalytic material, which is reflected in the higher values for the effectiveness factor, leading ultimately to an enhanced conversion level in the reactor. It is however important to develop a rigorous heterogeneous model for the reactor incorporating the two-dimensional feature of the solid phase owing to the presence of the finite hollow cylindrical catalyst pellet. Presently, heterogeneous models reported in the literature invariably employ one-dimension solid phase models meant for spherical catalyst pellets. The objective of the paper is to present a rigorous model of the fixed-bed reactors containing finite hollow cylindrical catalyst pellets. The reaction kinetics considered here is the widely used Michaelis–Menten kinetics for the liquid-phase bio-chemical reactions. The reaction parameters used here are for the enzymatic degradation of urea. Results indicate that increasing the height to diameter ratio helps to improve the conversion level. On the other hand, decreasing the thickness is apparently not as effective. This could however be explained in terms of the higher void fraction of the bed that causes a smaller amount of the solid phase to be packed in the fixed-bed bio-chemical reactor.
Keywords: Fixed-bed reactor, Finite hollow cylinder, Catalyst pellet, Conversion, Michaelis-Menten kinetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159950 Evaluation of Phenolic Profiles and Antioxidant Activities of Turkish Medicinal Plants: Tiliaargentea, Crataegi Folium Leaves and Polygonum bistorta Roots
Authors: S. Demiray, M. E. Pintado, P. M. L. Castro
Abstract:
There is a growing interest in the food industry and in preventive health care for the development and evaluation of natural antioxidants from medicinal plant materials. In the present work, extracts of three medicinal plants (Tilia argentea, Crataegi folium leaves and Polygonum bistorta roots) used in Turkish phytotheraphy were screened for their phenolic profiles and antioxidant properties. Crude extracts were obtained from different parts of plants, by solidliquid extraction with pure water, 70% acetone and 70% methanol aqueous solvents. The antioxidant activity of the extracts was determined by ABTS.+ radical cation scavenging activity. The Folin Ciocalteu procedure was used to assess the total phenolic concentrations of the extracts as gallic acid equivalents. A modified liquid chromatography-electro spray ionization-mass spectrometry (LC-ESI-MS) was used to obtain chromatographic profiles of the phenolic compounds in the medicinal plants. The predominant phenolic compounds detected in different extracts of the plants were catechin, protocatechuic and chlorogenic acids. The highest phenolic contents were obtained by using 70% acetone as aqueous solvent, whereas the lowest phenolic contents were obtained by water extraction due to Folin Ciocalteu results. The results indicate that acetone extracts of Tilia argentea had the highest antioxidant capacity as free ABTS radical scavengers. The lowest phenolic contents and antioxidant capacities were obtained from Polygonum bistorta root extracts.
Keywords: Medicinal plants, antioxidant activity, totalphenolics, LC-ESI-MS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502649 Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing
Authors: Esam I. Jassim, Mohamed M. Awad
Abstract:
Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.Keywords: CFD, Particle Separation, Shock wave, Supersonic Nozzle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325648 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance
Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic
Abstract:
A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.
Keywords: Carbon dioxide, electro-chemical reduction, microfluidics, ionic liquids, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 111147 Efficient Compact Micro DBD Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems
Authors: Kuvshinov, D., Siswanto, A., Lozano-Parada, J., Zimmerman, W. B.
Abstract:
Ozone is well known as a powerful, fast reacting oxidant. Ozone based processes produce no by-product residual as non-reacted ozone decomposes to molecular oxygen. Therefore an application of ozone is widely accepted as one of the main approaches for a Sustainable and Clean Technologies development.
There are number of technologies which require ozone to be delivered to specific points of a production network or reactors construction. Due to space constraints, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units.
Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented.
At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28*10-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure.
The MROG construction makes it applicable for both submerged and dry systems. With a robust compact design MROG can be used as an integrated module for production lines of high complexity.
Keywords: DBD, micro reactor, ozone, plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 300946 Development and Validation of a UPLC Method for the Determination of Albendazole Residues on Pharmaceutical Manufacturing Equipment Surfaces
Authors: R. S. Chandan, M. Vasudevan, Deecaraman, B. M. Gurupadayya
Abstract:
In Pharmaceutical industries, it is very important to remove drug residues from the equipment and areas used. The cleaning procedure must be validated, so special attention must be devoted to the methods used for analysis of trace amounts of drugs. A rapid, sensitive and specific reverse phase ultra performance liquid chromatographic (UPLC) method was developed for the quantitative determination of Albendazole in cleaning validation swab samples. The method was validated using an ACQUITY HSS C18, 50 x 2.1mm, 1.8μ column with a isocratic mobile phase containing a mixture of 1.36g of Potassium dihydrogenphosphate in 1000mL MilliQ water, 2mL of triethylamine and pH adjusted to 2.3 ± 0.05 with ortho-phosphoric acid, Acetonitrile and Methanol (50:40:10 v/v). The flow rate of the mobile phase was 0.5 mL min-1 with a column temperature of 350C and detection wavelength at 254nm using PDA detector. The injection volume was 2µl. Cotton swabs, moisten with acetonitrile were used to remove any residue of drug from stainless steel, teflon, rubber and silicon plates which mimic the production equipment surface and the mean extraction-recovery was found to be 91.8. The selected chromatographic condition was found to effectively elute Albendazole with retention time of 0.67min. The proposed method was found to be linear over the range of 0.2 to 150µg/mL and correlation coefficient obtained is 0.9992. The proposed method was found to be accurate, precise, reproducible and specific and it can also be used for routine quality control analysis of these drugs in biological samples either alone or in combined pharmaceutical dosage forms.
Keywords: Cleaning validation, Albendazole, residues, swab analysis, UPLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 311345 A Prevalence of Phonological Disorder in Children with Specific Language Impairment
Authors: Etim, Victoria Enefiok, Dada, Oluseyi Akintunde, Bassey Okon
Abstract:
Phonological disorder is a serious and disturbing issue to many parents and teachers. Efforts towards resolving the problem have been undermined by other specific disabilities which were hidden to many regular and special education teachers. It is against this background that this study was motivated to provide data on the prevalence of phonological disorders in children with specific language impairment (CWSLI) as the first step towards critical intervention. The study was a survey of 15 CWSLI from St. Louise Inclusive schools, Ikot Ekpene in Akwa Ibom State of Nigeria. Phonological Processes Diagnostic Scale (PPDS) with 17 short sentences, which cut across the five phonological processes that were examined, were validated by experts in test measurement, phonology and special education. The respondents were made to read the sentences with emphasis on the targeted sounds. Their utterances were recorded and analyzed in the language laboratory using Praat Software. Data were also collected through friendly interactions at different times from the clients. The theory of generative phonology was adopted for the descriptive analysis of the phonological processes. Data collected were analyzed using simple percentage and composite bar chart for better understanding of the result. The study found out that CWSLI exhibited the five phonological processes under investigation. It was revealed that 66.7%, 80%, 73.3%, 80%, and 86.7% of the respondents have severe deficit in fricative stopping, velar fronting, liquid gliding, final consonant deletion and cluster reduction, respectively. It was therefore recommended that a nationwide survey should be carried out to have national statistics of CWSLI with phonological deficits and develop intervention strategies for effective therapy to remediate the disorder.
Keywords: Language disorders, phonology, phonological processes, specific language impairment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108044 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production
Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia
Abstract:
Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.
Keywords: Direct steam generation, parabolic trough collectors, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79743 Management Prospects of Winery By-Products Based on Phenolic Compounds and Antioxidant Activity of Grape Skins: The Case of Greek Ionian Islands
Authors: Marinos Xagoraris, Iliada K. Lappa, Charalambos Kanakis, Dimitra Daferera, Christina Papadopoulou, Georgios Sourounis, Charilaos Giotis, Pavlos Bouchagier, Christos S. Pappas, Petros A. Tarantilis, Efstathia Skotti
Abstract:
The aim of this work was to recover phenolic compounds from grape skins produced in Greek varieties of the Ionian Islands in order to form the basis of calculations for their further utilization in the context of the circular economy. Isolation and further utilization of phenolic compounds is an important issue in winery by-products. For this purpose, 37 samples were collected, extracted, and analyzed in an attempt to provide the appropriate basis for their sustainable exploitation. Extraction of the bioactive compounds was held using an eco-friendly, non-toxic, and highly effective water-glycerol solvent system. Then, extracts were analyzed using UV-Vis, liquid chromatography-mass spectrometry (LC-MS), FTIR, and Raman spectroscopy. Also, total phenolic content and antioxidant activity were measured. LC-MS chromatography showed qualitative differences between different varieties. Peaks were attributed to monomeric 3-flavanols as well as monomeric, dimeric, and trimeric proanthocyanidins. The FT-IR and Raman spectra agreed with the chromatographic data and contributed to identifying phenolic compounds. Grape skins exhibited high total phenolic content (TPC), and it was proved that during vinification, a large number of polyphenols remained in the pomace. This study confirmed that grape skins from Ionian Islands are a promising source of bioactive compounds, suggesting their utilization under a bio-economic and environmental strategic framework.
Keywords: Antioxidant activity, grape skin, phenolic compounds, waste recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51142 Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt
Authors: Ahmed F. Azmy , Amal E. Saafan, Tamer M. Essam, Magdy A. Amin, Shaban H. Ahmed
Abstract:
Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosa (PS1), and Pseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazinon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 10^12CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated.
Keywords: Acinetobacter baumannii, biodegradation, Malathion, organophosphate pesticides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351541 Outcomes of Pregnancy in Women with TPO Positive Status after Appropriate Dose Adjustments of Thyroxin: A Prospective Cohort Study
Authors: Revathi S. Rajan, Pratibha Malik, Nupur Garg, Smitha Avula, Kamini A. Rao
Abstract:
This study aimed to analyse the pregnancy outcomes in patients with TPO positivity after appropriate L-Thyroxin supplementation with close surveillance. All pregnant women attending the antenatal clinic at Milann-The Fertility Center, Bangalore, India- from Aug 2013 to Oct 2014 whose booking TSH was more than 2.5 mIU/L were included along with those pregnant women with prior hypothyroidism who were TPO positive. Those with TPO positive status were vigorously managed with appropriate thyroxin supplementation and the doses were readjusted every 3 to 4 weeks until delivery. Women with recurrent pregnancy loss were also tested for TPO positivity and if tested positive, were monitored serially with TSH and fT4 levels every 3 to 4 weeks and appropriately supplemented with thyroxin when the levels fluctuated. The testing was done after an informed consent in all these women. The statistical software namely SAS 9.2, SPSS 15.0, Stata 10.1, MedCalc 9.0.1, Systat 12.0 and R environment ver.2.11.1 were used for the analysis of the data. 460 pregnant women were screened for thyroid dysfunction at booking of which 52% were hypothyroid. Majority of them (31.08%) were subclinically hypothyroid and the remaining were overt. 25% of the total no. of patients screened were TPO positive. The various pregnancy complications that were observed in the TPO positive women were gestational glucose intolerance [60%], threatened abortion [21%], midtrimester abortion [4.3%], premature rupture of membranes [4.3%], cervical funneling [4.3%] and fetal growth restriction [3.5%]. 95.6% of the patients who followed up till the end delivered beyond 30 weeks. 42.6% of these patients had previous history of recurrent abortions or adverse obstetric outcome and 21.7% of the delivered babies required NICU admission. Obstetric outcomes in our study in terms of midtrimester abortions, placental abruption, and preterm delivery improved for the better after close monitoring of the thyroid hormone [TSH and fT4] levels every 3 to 4 weeks with appropriate dose adjustment throughout pregnancy. Euthyroid women with TPO positive status enrolled in the study incidentally were those with recurrent abortions/infertility and required thyroxin supplements due to elevated Thyroid hormone (TSH, fT4) levels during the course of their pregnancy. Significant associations were found with age>30 years and Hyperhomocysteinemia [p=0.017], recurrent pregnancy loss or previous adverse obstetric outcomes [p=0.067] and APLA [p=0.029]. TPO antibody levels >600 I U/ml were significantly associated with development of gestational hypertension [p=0.041] and fetal growth restriction [p=0.082]. Euthyroid women with TPO positivity were also screened periodically to counter fluctuations of the thyroid hormone levels with appropriate thyroxin supplementation. Thus, early identification along with aggressive management of thyroid dysfunction and stratification of these patients based on their TPO status with appropriate thyroxin supplementation beginning in the first trimester will aid risk modulation and also help avert complications.
Keywords: Antinuclear antibody, Subclinical hypothyroidism, Thyroxin, TPO antibody.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170940 Thermal and Electrical Properties of Carbon Nanotubes Purified by Acid Digestion
Authors: Neslihan Yuca, Nilgün Karatepe, Fahrettin Yakuphanoğlu
Abstract:
Carbon nanotubes (CNTs) possess unique structural, mechanical, thermal and electronic properties, and have been proposed to be used for applications in many fields. However, to reach the full potential of the CNTs, many problems still need to be solved, including the development of an easy and effective purification procedure, since synthesized CNTs contain impurities, such as amorphous carbon, carbon nanoparticles and metal particles. Different purification methods yield different CNT characteristics and may be suitable for the production of different types of CNTs. In this study, the effect of different purification chemicals on carbon nanotube quality was investigated. CNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. The liquid phase oxidation method was applied for the purification of the synthesized CNT materials. Three different acid chemicals (HNO3, H2SO4, and HCl) were used in the removal of the metal catalysts from the synthesized CNT material to investigate the possible effects of each acid solution to the purification step. Purification experiments were carried out at two different temperatures (75 and 120 °C), two different acid concentrations (3 and 6 M) and for three different time intervals (6, 8 and 15 h). A 30% H2O2 : 3M HCl (1:1 v%) solution was also used in the purification step to remove both the metal catalysts and the amorphous carbon. The purifications using this solution were performed at the temperature of 75°C for 8 hours. Purification efficiencies at different conditions were evaluated by thermogravimetric analysis. Thermal and electrical properties of CNTs were also determined. It was found that the obtained electrical conductivity values for the carbon nanotubes were typical for organic semiconductor materials and thermal stabilities were changed depending on the purification chemicals.Keywords: Carbon nanotubes, purification, acid digestion, thermalstability, electrical conductivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240339 Hydraulic Optimization of an Adjustable Spiral-Shaped Evaporator
Authors: Matthias Feiner, Francisco Javier Fernández García, Michael Arneman, Martin Kipfmüller
Abstract:
To ensure reliability in miniaturized devices or processes with increased heat fluxes, very efficient cooling methods have to be employed in order to cope with small available cooling surfaces. To address this problem, a certain type of evaporator/heat exchanger was developed: It is called a swirl evaporator due to its flow characteristic. The swirl evaporator consists of a concentrically eroded screw geometry in which a capillary tube is guided, which is inserted into a pocket hole in components with high heat load. The liquid refrigerant R32 is sprayed through the capillary tube to the end face of the blind hole and is sucked off against the injection direction in the screw geometry. Its inner diameter is between one and three millimeters. The refrigerant is sprayed into the pocket hole via a small tube aligned in the center of the bore hole and is sucked off on the front side of the hole against the direction of injection. The refrigerant is sucked off in a helical geometry (twisted flow) so that it is accelerated against the hot wall (centrifugal acceleration). This results in an increase in the critical heat flux of up to 40%. In this way, more heat can be dissipated on the same surface/available installation space. This enables a wide range of technical applications. To optimize the design for the needs in various fields of industry, like the internal tool cooling when machining nickel base alloys like Inconel 718, a correlation-based model of the swirl-evaporator was developed. The model is separated into 3 subgroups with overall 5 regimes. The pressure drop and heat transfer are calculated separately. An approach to determine the locality of phase change in the capillary and the swirl was implemented. A test stand has been developed to verify the simulation.
Keywords: Helically-shaped, oil-free, R32, swirl-evaporator, twist flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47938 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.
Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40437 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: Sensors, endocrine disruptors, nanoparticles, electrochemical, microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158336 Vitamin Content of Swordfish (Xhiphias gladius) Affected by Salting and Frying
Authors: L. Piñeiro, N. Cobas, L. Gómez-Limia, S. Martínez, I. Franco
Abstract:
The swordfish (Xiphias gladius) is a large oceanic fish of high commercial value, which is widely distributed in waters of the world’s oceans. They are considered to be an important source of high quality proteins, vitamins and essential fatty acids, although only half of the population follows the recommendation of nutritionists to consume fish at least twice a week. Swordfish is consumed worldwide because of its low fat content and high protein content. It is generally sold as fresh, frozen, and as pieces or slices. The aim of this study was to evaluate the effect of salting and frying on the composition of the water-soluble vitamins (B2, B3, B9 and B12) and fat-soluble vitamins (A, D, and E) of swordfish. Three loins of swordfish from Pacific Ocean were analyzed. All the fishes had a weight between 50 and 70 kg and were transported to the laboratory frozen (-18 ºC). Before the processing, they were defrosted at 4 ºC. Each loin was sliced and salted in brine. After cleaning the slices, they were divided into portions (10×2 cm) and fried in olive oil. The identification and quantification of vitamins were carried out by high-performance liquid chromatography (HPLC), using methanol and 0.010% trifluoroacetic acid as mobile phases at a flow-rate of 0.7 mL min-1. The UV-Vis detector was used for the detection of the water- and fat-soluble vitamins (A and D), as well as the fluorescence detector for the detection of the vitamin E. During salting, water and fat-soluble vitamin contents remained constant, observing an evident decrease in the values of vitamin B2. The diffusion of salt into the interior of the pieces and the loss of constitution water that occur during this stage would be related to this significant decrease. In general, after frying water-soluble and fat-soluble vitamins showed a great thermolability with high percentages of retention with values among 50–100%. Vitamin B3 is the one that exhibited higher percentages of retention with values close to 100%. However, vitamin B9 presented the highest losses with a percentage of retention of less than 20%.
Keywords: Frying, HPLC, salting, swordfish, vitamins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93835 In Search of Innovation: Exploring the Dynamics of Innovation
Authors: Michal Lysek, Mike Danilovic, Jasmine Lihua Liu
Abstract:
HMS Industrial Networks AB has been recognized as one of the most innovative companies in the industrial communication industry worldwide. The creation of their Anybus innovation during the 1990s contributed considerably to the company’s success. From inception, HMS’ employees were innovating for the purpose of creating new business (the creation phase). After the Anybus innovation, they began the process of internationalization (the commercialization phase), which in turn led them to concentrate on cost reduction, product quality, delivery precision, operational efficiency, and increasing growth (the growth phase). As a result of this transformation, performing new radical innovations have become more complicated. The purpose of our research was to explore the dynamics of innovation at HMS from the aspect of key actors, activities, and events, over the three phases, in order to understand what led to the creation of their Anybus innovation, and why it has become increasingly challenging for HMS to create new radical innovations for the future. Our research methodology was based on a longitudinal, retrospective study from the inception of HMS in 1988 to 2014, a single case study inspired by the grounded theory approach. We conducted 47 interviews and collected 1 024 historical documents for our research. Our analysis has revealed that HMS’ success in creating the Anybus, and developing a successful business around the innovation, was based on three main capabilities – cultivating customer relations on different managerial and organizational levels, inspiring business relations, and balancing complementary human assets for the purpose of business creation. The success of HMS has turned the management’s attention away from past activities of key actors, of their behavior, and how they influenced and stimulated the creation of radical innovations. Nowadays, they are rhetorically focusing on creativity and innovation. All the while, their real actions put emphasis on growth, cost reduction, product quality, delivery precision, operational efficiency, and moneymaking. In the process of becoming an international company, HMS gradually refocused. In so doing they became profitable and successful, but they also forgot what made them innovative in the first place. Fortunately, HMS’ management has come to realize that this is the case and they are now in search of recapturing innovation once again. Our analysis indicates that HMS’ management is facing several barriers to innovation related path dependency and other lock-in phenomena. HMS’ management has been captured, trapped in their mindset and actions, by the success of the past. But now their future has to be secured, and they have come to realize that moneymaking is not everything. In recent years, HMS’ management have begun to search for innovation once more, in order to recapture their past capabilities for creating radical innovations. In order to unlock their managerial perceptions of customer needs and their counter-innovation driven activities and events, to utilize the full potential of their employees and capture the innovation opportunity for the future.Keywords: Barriers to innovation, dynamics of innovation, in search of excellence and innovation, radical innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306734 Liquidity Risk of Banks in Light of a Dominant Share of Foreign Capital in the Polish Banking Sector
Authors: Karolina Patora
Abstract:
This article investigates liquidity risk management by banks, which has gained significant importance since the global financial crisis of 2008. The issue is of particular interest for countries like Poland, in which foreign capital plays a dominant role. Such an ownership structure poses certain risks to the local banking sector, which faces an increased probability of the withdrawal of funding or assets’ transfers abroad in case of a crisis. Both these factors can have a detrimental influence on the liquidity position of foreign-owned banks and hence negatively affect the financial stability of the whole banking sector. The aim of this study is to evaluate the impact of a dominating share of foreign investors in the Polish banking sector on the liquidity position of commercial banks. The study hypothesizes that the ownership structure of the Polish banking sector, in which there are banks predominantly controlled by foreign investors, does not pose a threat to the liquidity position of Polish banks. A supplementary research hypothesis is that the liquidity risk profile of foreign-owned banks differs from that of domestic banks. The sample consists of 14 foreign-owned banks and 5 domestic banks owned by local investors, which together constitute approximately 87% of the banking sector’s assets. The data covers the period of 2004–2014. The results of the regression models show no evidence of significant differences in terms of the dynamics of changes of the liquidity buffers between the foreign-owned and domestic banks, although the signs of the coefficients might suggest that the foreign-owned banks were decreasing the holdings of liquid assets at a slower pace over the examined period, compared to the domestic banks. However, no proof of the statistical significance of these findings has been found. The supplementary research hypothesis that the liquidity risk profile of foreign-controlled banks differs from that of domestic banks was rejected.
Keywords: Financial stability, foreign-owned banks, liquidity position, liquidity risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109633 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements
Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas
Abstract:
Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.
Keywords: Acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99832 Injunctions, Disjunctions, Remnants: The Reverse of Unity
Authors: Igor Guatelli
Abstract:
The universe of aesthetic perception entails impasses about sensitive divergences that each text or visual object may be subjected to. If approached through intertextuality that is not based on the misleading notion of kinships or similarities a priori admissible, the possibility of anachronistic, heterogeneous - and non-diachronic - assemblies can enhance the emergence of interval movements, intermediate, and conflicting, conducive to a method of reading, interpreting, and assigning meaning that escapes the rigid antinomies of the mere being and non-being of things. In negative, they operate in a relationship built by the lack of an adjusted meaning set by their positive existences, with no remainders; the generated interval becomes the remnant of each of them; it is the opening that obscures the stable positions of each one. Without the negative of absence, of that which is always missing or must be missing in a text, concept, or image made positive by history, nothing is perceived beyond what has been already given. Pairings or binary oppositions cannot lead only to functional syntheses; on the contrary, methodological disturbances accumulated by the approximation of signs and entities can initiate a process of becoming as an opening to an unforeseen other, transformation until a moment when the difficulties of [re]conciliation become the mainstay of a future of that sign/entity, not envisioned a priori. A counter-history can emerge from these unprecedented, misadjusted approaches, beginnings of unassigned injunctions and disjunctions, in short, difficult alliances that open cracks in a supposedly cohesive history, chained in its apparent linearity with no remains, understood as a categorical historical imperative. Interstices are minority fields that, because of their opening, are capable of causing opacity in that which, apparently, presents itself with irreducible clarity. Resulting from an incomplete and maladjusted [at the least dual] marriage between the signs/entities that originate them, this interval may destabilize and cause disorder in these entities and their own meanings. The interstitials offer a hyphenated relationship: a simultaneous union and separation, a spacing between the entity’s identity and its otherness or, alterity. One and the other may no longer be seen without the crack or fissure that now separates them, uniting, by a space-time lapse. Ontological, semantic shifts are caused by this fissure, an absence between one and the other, one with and against the other. Based on an improbable approximation between some conceptual and semantic shifts within the design production of architect Rem Koolhaas and the textual production of the philosopher Jacques Derrida, this article questions the notion of unity, coherence, affinity, and complementarity in the process of construction of thought from these ontological, epistemological, and semiological fissures that rattle the signs/entities and their stable meanings. Fissures in a thought that is considered coherent, cohesive, formatted are the negativity that constitutes the interstices that allow us to move towards what still remains as non-identity, which allows us to begin another story.
Keywords: Clearing, interstice, negative, remnant, spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43231 Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites
Authors: Shanawaz Patil, Mohamed Haneef, K. S. Narayanaswamy
Abstract:
In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 oC for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and as cast hybrid composites.
Keywords: Beryl, graphene, heat treatment, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106230 Kinetics and Thermodynamics Adsorption of Phenolic Compounds on Organic-Inorganic Hybrid Mesoporous Material
Authors: Makhlouf Mourad, Messabih Sidi Mohamed, Bouchher Omar, Houali Farida, Benrachedi Khaled
Abstract:
Mesoporous materials are very commonly used as adsorbent materials for removing phenolic compounds. However, the adsorption mechanism of these compounds is still poorly controlled. However, understanding the interactions mesoporous materials/adsorbed molecules is very important in order to optimize the processes of liquid phase adsorption. The difficulty of synthesis is to keep an orderly and cubic pore structure and achieve a homogeneous surface modification. The grafting of Si(CH3)3 was chosen, to transform hydrophilic surfaces hydrophobic surfaces. The aim of this work is to study the kinetics and thermodynamics of two volatile organic compounds VOC phenol (PhOH) and P hydroxy benzoic acid (4AHB) on a mesoporous material of type MCM-48 grafted with an organosilane of the Trimethylchlorosilane (TMCS) type, the material thus grafted or functionalized (hereinafter referred to as MCM-48-G). In a first step, the kinetic and thermodynamic study of the adsorption isotherms of each of the VOCs in mono-solution was carried out. In a second step, a similar study was carried out on a mixture of these two compounds. Kinetic models (pseudo-first order, pseudo-second order) were used to determine kinetic adsorption parameters. The thermodynamic parameters of the adsorption isotherms were determined by the adsorption models (Langmuir, Freundlich). The comparative study of adsorption of PhOH and 4AHB proved that MCM-48-G had a high adsorption capacity for PhOH and 4AHB; this may be related to the hydrophobicity created by the organic function of TMCS in MCM-48-G. The adsorption results for the two compounds using the Freundlich and Langmuir models show that the adsorption of 4AHB was higher than PhOH. The values obtained by the adsorption thermodynamics show that the adsorption interactions for our sample with the phenol and 4AHB are of a physical nature. The adsorption of our VOCs on the MCM-48 (G) is a spontaneous and exothermic process.
Keywords: Adsorption, kinetics, isotherm, mesoporous materials, TMCS, phenol, P-hydroxy benzoic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81129 Hydrogen and Diesel Combustion on a Single Cylinder Four Stroke Diesel Engine in Dual Fuel mode with Varying Injection Strategies
Authors: Probir Kumar Bose, Rahul Banerjee, Madhujit Deb
Abstract:
The present energy situation and the concerns about global warming has stimulated active research interest in non-petroleum, carbon free compounds and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. Recently more and more stringent environmental regulations being enacted in the USA and Europe have led to the research and development activities on clean alternative fuels. Among the gaseous fuels hydrogen is considered to be one of the clean alternative fuel. Hydrogen is an interesting candidate for future internal combustion engine based power trains. In this experimental investigation, the performance and combustion analysis were carried out on a direct injection (DI) diesel engine using hydrogen with diesel following the TMI(Time Manifold Injection) technique at different injection timings of 10 degree,45 degree and 80 degree ATDC using an electronic control unit (ECU) and injection durations were controlled. Further, the tests have been carried out at a constant speed of 1500rpm at different load conditions and it can be observed that brake thermal efficiency increases with increase in load conditions with a maximum gain of 15% at full load conditions during all injection strategies of hydrogen. It was also observed that with the increase in hydrogen energy share BSEC started reducing and it reduced to a maximum of 9% as compared to baseline diesel at 10deg ATDC injection during maximum injection proving the exceptional combustion properties of hydrogen.Keywords: Hydrogen, performance, combustion, alternative fuels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 342728 Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae
Authors: Pavel Pořízka, David Prochazka, Karel Novotný, Ota Samek, ZdeněkPilát, Klára Procházková, and Jozef Kaiser
Abstract:
Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.Keywords: Laser-Induced Breakdown Spectroscopy, Raman Spectroscopy, Algae, Algal strains, Bioremediation, Biofuels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226127 Supervisory Control for Induction Machine with a Modified Star/Delta Switch in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper proposes an intelligent, supervisory, hysteresis liquid-level control with three-state energy saving mode (ESM) for induction motor (IM) in fluid transportation system (FTS) including storage tank. The IM pump drive comprises a modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to the computer’s ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. Considering the motor’s thermal capacity used (TCU) and grid-compatible tariff structure, a logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction. Fuzzy-logic (FL) based availability assessment is designed and deployed on cloud, in order to provide mobilized service for the star/delta switch and highly reliable contactors. Moreover, an artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and computer simulations are performed to demonstrate the validity and effectiveness of the proposed control system in terms of reliability, power quality and operational cost reduction with a motivation of power factor correction.
Keywords: Artificial Neural Network, ANN, Contactor Health Assessment, Energy Saving Mode, Induction Machine, IM, Supervisory Control, Fluid Transportation, Fuzzy Logic, FL, cloud computing, pumped storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45826 Comparison between Open and Closed System for Dewatering with Geotextile: Field and Comparative Study
Authors: Matheus Müller, Delma Vidal
Abstract:
The present paper aims to expose two techniques of dewatering for sludge, analyzing its operations and dewatering processes, aiming at improving the conditions of disposal of residues with high liquid content. It describes the field tests performed on two geotextile systems, a closed geotextile tube and an open geotextile drying bed, both of which are submitted to two filling cycles. The sludge used in the filling cycles for the field trials is from the water treatment plant of the Technological Center of Aeronautics – CTA, in São José dos Campos, Brazil. Data about volume and height abatement due to the dewatering and consolidation were collected per time, until it was observed constancy. With the laboratory analysis of the sludge allied to the data collected in the field, it was possible to perform a critical comparative study between the observed and the scientific literature, in this way, this paper expresses the data obtained and compares them with the bibliography. The tests were carried out on three fronts: field tests, including the filling cycles of the systems with the sludge from CTA, taking measurements of filling time per cycle and maximum filling height per cycle, heights against the abatement by dewatering of the systems over time; tests carried out in the laboratory, including the characterization of the sludge and removal of material samples from the systems to ascertain the solids content within the systems per time and; comparing the data obtained in the field and laboratory tests with the scientific literature. Through the study, it was possible to perceive that the process of densification of the material inside a closed system, such as the geotextile tube, occurs faster than the observed in the drying bed system. This process of accelerated densification can be brought about by the pumping pressure of the sludge in its filling and by the confinement of the residue through the permeable geotextile membrane (allowing water to pass through), accelerating the process of densification and dewatering by its own weight after the filling with sludge.
Keywords: Consolidation, dewatering, geotextile drying bed, geotextile tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69125 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells
Authors: Mohanapriya Subramanian, V. Raj
Abstract:
Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.Keywords: Biopolymers, fuel cells, nanocomposite, methanol crossover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121824 Regional Low Gravity Anomalies Influencing High Concentrations of Heavy Minerals on Placer Deposits
Authors: T. B. Karu Jayasundara
Abstract:
Regions of low gravity and gravity anomalies both influence heavy mineral concentrations on placer deposits. Economically imported heavy minerals are likely to have higher levels of deposition in low gravity regions of placer deposits. This can be found in coastal regions of Southern Asia, particularly in Sri Lanka and Peninsula India and areas located in the lowest gravity region of the world. The area about 70 kilometers of the east coast of Sri Lanka is covered by a high percentage of ilmenite deposits, and the southwest coast of the island consists of Monazite placer deposit. These deposits are one of the largest placer deposits in the world. In India, the heavy mineral industry has a good market. On the other hand, based on the coastal placer deposits recorded, the high gravity region located around Papua New Guinea, has no such heavy mineral deposits. In low gravity regions, with the help of other depositional environmental factors, the grains have more time and space to float in the sea, this helps bring high concentrations of heavy mineral deposits to the coast. The effect of low and high gravity can be demonstrated by using heavy mineral separation devices. The Wilfley heavy mineral separating table is one of these; it is extensively used in industries and in laboratories for heavy mineral separation. The horizontally oscillating Wilfley table helps to separate heavy and light mineral grains in to deferent fractions, with the use of water. In this experiment, the low and high angle of the Wilfley table are representing low and high gravity respectively. A sample mixture of grain size <0.85 mm of heavy and light mineral grains has been used for this experiment. The high and low angle of the table was 60 and 20 respectively for this experiment. The separated fractions from the table are again separated into heavy and light minerals, with the use of heavy liquid, which consists of a specific gravity of 2.85. The fractions of separated heavy and light minerals have been used for drawing the two-dimensional graphs. The graphs show that the low gravity stage has a high percentage of heavy minerals collected in the upper area of the table than in the high gravity stage. The results of the experiment can be used for the comparison of regional low gravity and high gravity levels of heavy minerals. If there are any heavy mineral deposits in the high gravity regions, these deposits will take place far away from the coast, within the continental shelf.
Keywords: Anomaly, gravity, influence, mineral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102