WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/3767,
	  title     = {Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing},
	  author    = {Esam I. Jassim and  Mohamed M. Awad},
	  country	= {},
	  institution	= {},
	  abstract     = {Natural gas flow contains undesirable solid particles,
liquid condensation, and/or oil droplets and requires reliable
removing equipment to perform filtration. Recent natural gas
processing applications are demanded compactness and reliability of
process equipment. Since conventional means are sophisticated in
design, poor in efficiency, and continue lacking robust, a supersonic
nozzle has been introduced as an alternative means to meet such
demands.
A 3-D Convergent-Divergent Nozzle is simulated using
commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six
different shapes of nozzle are numerically examined to illustrate the
position of shock-wave as such spot could be considered as a
benchmark of particle separation. Rectangle, triangle, circular,
elliptical, pentagon, and hexagon nozzles are simulated using Fluent
Code with all have same cross-sectional area.
The simple one-dimensional inviscid theory does not describe the
actual features of fluid flow precisely as it ignores the impact of
nozzle configuration on the flow properties. CFD Simulation results,
however, show that nozzle geometry influences the flow structures
including location of shock wave.
The CFD analysis predicts shock appearance when p01/pa>1.2 for
almost all geometry and locates at the lower area ratio (Ae/At).
Simulation results showed that shock wave in Elliptical nozzle has
the farthest distance from the throat among the others at relatively
small NPR. As NPR increases, hexagon would be the farthest. The
numerical result is compared with available experimental data and
has shown good agreement in terms of shock location and flow
structure.},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {7},
	  number    = {6},
	  year      = {2013},
	  pages     = {344 - 349},
	  ee        = {https://publications.waset.org/pdf/3767},
	  url   	= {https://publications.waset.org/vol/78},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 78, 2013},
	}