Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32

Search results for: Bioremediation

32 Potential of Agro-Waste Extracts as Supplements for the Continuous Bioremediation of Free Cyanide Contaminated Wastewater

Authors: Seteno K. O. Ntwampe, Bruno A. Q. Santos

Abstract:

Different agricultural waste peels were assessed for their suitability to be used as primary substrates for the bioremediation of free cyanide (CN-) by a cyanide-degrading fungus Aspergillus awamori isolated from cyanide containing wastewater. The bioremediated CN- concentration were in the range of 36 to 110 mg CN-/L, with Orange (C. sinensis) > Carrot (D. carota) > Onion (A. cepa) > Apple (M. pumila), being chosen as suitable substrates for large scale CN- degradation processes due to: 1) the high concentration of bioremediated CN-, 2) total reduced sugars released into solution to sustain the biocatalyst, and 3) minimal residual NH4- N concentration after fermentation. The bioremediation rate constants (k) were 0.017h-1 (0h < t < 24h), with improved bioremediation rates (0.02189h-1) observed after 24h. The averaged nitrilase activity was ~10 U/L.

Keywords: Agricultural waste, Bioremediation, Cyanide, Wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
31 Bioremediation of Oil-Polluted Soil of Western Kazakhstan

Authors: S. A. Aytkeldiyeva, A. K. Sadanov, E. R. Faizulina, A. A. Kurmanbayev

Abstract:

15 strains of oil-destructing microorganisms were isolated from oil polluted soil of Western Kazakhstan. Strains 2-A and 41-3 with the highest oil-destructing activities were chosen from them. It was shown that these strains oxidized n-alkanes very well, but isoalkanes, isoparaffin, cycloparaffin and heavy aromatic compounds were destructed very slowly. These both strains were tested as preparations for bioremediation of oil-polluted soil in model and field experiments. The degree of utilizing of soil oil by this preparation was 79-84 % in field experiments.

Keywords: Bioremediation, n-alkanes, oil-polluted soil, oiloxidizingmicroorganisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
30 Isolation of Biosurfactant Producing Spore-Forming Bacteria from Oman: Potential Applications in Bioremediation

Authors: Saif N. Al-Bahry, Yahya M. Al-Wahaibi, Abdulkadir E. Elshafie, Ali S. Al-Bemani, Sanket J. Joshi

Abstract:

Environmental pollution is a global problem and best possible solution is identifying and utilizing native microorganisms. One possible application of microbial product -biosurfactant is in bioremediation of hydrocarbon contaminated sites. We have screened forty two different petroleum contaminated sites from Oman, for biosurfactant producing spore-forming bacterial isolates. Initial screening showed that out of 42 soil samples, three showed reduction in surface tension (ST) and interfacial tension (IFT) within 24h of incubation at 40°C. Out of those 3 soil samples, one was further selected for isolation of bacteria and 14 different bacteria were isolated in pure form. Of those 14 spore-forming, rod shaped bacteria, two showed highest reduction in ST and IFT in the range of 70mN/m to <35mN/m and 26.69mN/m to <9mN/m, respectively within 24h. These bacterial biosurfactants may be utilized for bioremediation of oil-spills.

Keywords: Bioremediation, biosurfactant, hydrocarbon pollution, spore-forming bacteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
29 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods

Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar

Abstract:

Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.

Keywords: Bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
28 Bioremediation of Hydrocarbon and Some Heavy Metal Polluted Wastewater Effluent of a Typical Refinery

Authors: S. Abdulsalam, A. D. I. Suleiman, N. M. Musa, M. Yusuf

Abstract:

Environment free of pollutants should be the concern of every individual but with industrialization and urbanization it is difficult to achieve. In view of achieving a pollution limited environment at low cost, a study was conducted on the use of bioremediation technology to remediate hydrocarbons and three heavy metals namely; copper (Cu), zinc (Zn) and iron (Fe) from a typical petroleum refinery wastewater in a closed system. Physicochemical and microbiological characteristics on the wastewater sample revealed that it was polluted with the aforementioned pollutants. Isolation and identification of microorganisms present in the wastewater sample revealed the presence of Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Staphylococcus epidermidis. Bioremediation experiments carried out on five batch reactors with different compositions but at same environmental conditions revealed that treatment T5 (boosted with the association of Bacillus subtilis, Micrococcus luteus) gave the best result in terms of oil and grease content removal (i.e. 67% in 63 days). In addition, these microorganisms were able of reducing the concentrations of heavy metals in the sample. Treatments T5, T3 (boosted with Bacillus subtilis only) and T4 (boosted with Micrococcus luteus only) gave optimum percentage uptakes of 65, 75 and 25 for Cu, Zn and Fe respectively.

Keywords: Boosted, bioremediation, closed system, aeration, uptake, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
27 Oily Sludge Bioremediation Pilot Plant Project, Nigeria

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment / bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance / quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water was observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.

Keywords: Bioremediation, Contaminated sediment, Land farming, Oily sludge, Oil Terminal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
26 Bioremediation of Sewage Sludge Contaminated with Fluorene Using a Lipopeptide Biosurfactant

Authors: X. Vecino, J. M. Cruz, A. Moldes

Abstract:

The disposal and the treatment of sewage sludge is an expensive and environmentally complex problem. In this work, a lipopeptide biosurfactant extracted from corn steep liquor was used as ecofriendly and cost-competitive alternative for the mobilization and bioremediation of fluorene in sewage sludge. Results have demonstrated that this biosurfactant has the capability to mobilize fluorene to the aqueous phase, reducing the amount of fluorene in the sewage sludge from 484.4 mg/Kg up to 413.7 mg/Kg and 196.0 mg/Kg after 1 and 27 days respectively. Furthermore, once the fluorene was extracted the lipopeptide biosurfactant contained in the aqueous phase allowed the biodegradation, up to 40.5% of the initial concentration of this polycyclic aromatic hydrocarbon.

Keywords: Fluorene, lipopeptide biosurfactant, mobilization, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
25 Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Authors: Pavel Pořízka, David Prochazka, Karel Novotný, Ota Samek, ZdeněkPilát, Klára Procházková, and Jozef Kaiser

Abstract:

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Keywords: Laser-Induced Breakdown Spectroscopy, Raman Spectroscopy, Algae, Algal strains, Bioremediation, Biofuels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
24 Bioremediation of Phenanthrene by Monocultures and Mixed Culture Bacteria Isolated from Contaminated Soil

Authors: A. Fazilah, I. Darah, I. Noraznawati

Abstract:

Three different bacteria capable of degrading phenanthrene were isolated from hydrocarbon contaminated site. In this study, the phenanthrene-degrading activity by defined monoculture was determined and mixed culture was identified as Acinetobacter sp. P3d, Bacillus sp. P4a and Pseudomonas sp. P6. All bacteria were able to grow in a minimal salt medium saturated with phenanthrene as the sole source of carbon and energy. Phenanthrene degradation efficiencies by different combinations (consortia) of these bacteria were investigated and their phenanthrene degradation was evaluated by gas chromatography. Among the monocultures, Pseudomonas sp. P6 exhibited 58.71% activity compared to Acinetobacter sp. P3d and Bacillus sp. P4a which were 56.97% and 53.05%, respectively after 28 days of cultivation. All consortia showed high phenanthrene elimination which were 95.64, 79.37, 87.19, 79.21% for Consortia A, B, C and D, respectively. The results indicate that all of the bacteria isolated may effectively degrade target chemical and have a promising application in bioremediation of hydrocarbon contaminated soil purposes.

Keywords: Acinetobacter sp. P3d, Bacillus sp. P4a, consortia, phenanthrene, Pseudomonas sp. P6.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
23 Isolation and Screening of Laccase Producing Basidiomycetes via Submerged Fermentations

Authors: Mun Yee Chan, Sin Ming Goh, Lisa Gaik Ai Ong

Abstract:

Approximately 10,000 different types of dyes and pigments are being used in various industrial applications yearly, which include the textile and printing industries. However, these dyes are difficult to degrade naturally once they enter the aquatic system. Their high persistency in natural environment poses a potential health hazard to all form of life. Hence, there is a need for alternative dye removal strategy in the environment via bioremediation. In this study, fungi laccase is investigated via commercial agar dyes plates and submerged fermentation to explore the application of fungi laccase in textile dye wastewater treatment. Two locally isolated basidiomycetes were screened for laccase activity using media added with commercial dyes such as 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), guaiacol and Remazol Brillant Blue R (RBBR). Isolate TBB3 (1.70±0.06) and EL2 (1.78±0.08) gave the highest results for ABTS plates with the appearance of greenish halo on around the isolates. Submerged fermentation performed on Isolate TBB3 with the productivity 3.9067 U/ml/day, whereas the laccase activity for Isolate EL2 was much lower (0.2097 U/ml/day). As isolate TBB3 showed higher laccase production, it was subjected to molecular characterization by DNA isolation, PCR amplification and sequencing of ITS region of nuclear ribosomal DNA. After being compared with other sequences in National Center for Biotechnology Information (NCBI database), isolate TBB3 is probably from species Trametes hirsutei. Further research work can be performed on this isolate by upscale the production of laccase in order to meet the demands of the requirement for higher enzyme titer for the bioremediation of textile dyes.

Keywords: Bioremediation, dyes, fermentation, laccase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
22 Feasibility Study of Mine Tailing’s Treatment by Acidithiobacillus thiooxidans DSM 26636

Authors: M. Gómez-Ramírez, A. Rivas-Castillo, I. Rodríguez-Pozos, R. A. Avalos-Zuñiga, N. G. Rojas-Avelizapa

Abstract:

Among the diverse types of pollutants produced by anthropogenic activities, metals represent a serious threat, due to their accumulation in ecosystems and their elevated toxicity. The mine tailings of abandoned mines contain high levels of metals such as arsenic (As), zinc (Zn), copper (Cu), and lead (Pb), which do not suffer any degradation process, they are accumulated in environment. Abandoned mine tailings potentially could contaminate rivers and aquifers representing a risk for human health due to their high metal content. In an attempt to remove the metals and thereby mitigate the environmental pollution, an environmentally friendly and economical method of bioremediation has been introduced. Bioleaching has been actively studied over the last several years, and it is one of the bioremediation solutions used to treat heavy metals contained in sewage sludge, sediment and contaminated soil. Acidithiobacillus thiooxidans, an extremely acidophilic, chemolithoautotrophic, gram-negative, rod shaped microorganism, which is typically related to Cu mining operations (bioleaching), has been well studied for industrial applications. The sulfuric acid produced plays a major role in bioleaching. Specifically, Acidithiobacillus thiooxidans strain DSM 26636 has been able to leach Al, Ni, V, Fe, Mg, Si, and Ni contained in slags from coal combustion wastes. The present study reports the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in two different mine tailing samples (MT1 and MT2). It was observed that Al, Fe, and Mn were removed in 36.3±1.7, 191.2±1.6, and 4.5±0.2 mg/kg for MT1, and in 74.5±0.3, 208.3±0.5, and 20.9±0.1 for MT2. Besides, < 1.5 mg/kg of Au and Ru were also bioleached from MT1; in MT2, bioleaching of Zn was observed at 55.7±1.3 mg/kg, besides removal of < 1.5 mg/kg was observed for As, Ir, Li, and 0.6 for Os in this residue. These results show the potential of strain DSM 26636 for the bioleaching of metals that came from different mine tailings.

Keywords: A. thiooxidans, bioleaching, metals, mine tailings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
21 Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin

Authors: María D. Groppa, Andrea Trentini, Myriam Zawoznik, Roxana Bigi, Carlos Nadra, Patricia L. Marconi

Abstract:

In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae Chlorella vulgaris immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cildáñez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of Escherichia coli and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using Allium cepa seeds and Cildáñez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cildáñez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cildáñez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.

Keywords: Bioreactor, bioremediation, Chlorella vulgaris, Matanza-Riachuelo basin, microalgae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
20 Biodegradation of PCP by the Rhizobacteria Isolated from Pentachlorophenol-tolerant Crop Species

Authors: Avita K. Marihal, K.S. Jagadeesh, Sarita Sinha

Abstract:

Pentachlorophenol (PCP) is a polychlorinated aromatic compound that is widespread in industrial effluents and is considered to be a serious pollutant. Among the variety of industrial effluents encountered, effluents from tanning industry are very important and have a serious pollution potential. PCP is also formed unintentionally in effluents of paper and pulp industries. It is highly persistent in soils and is lethal to a wide variety of beneficial microorganisms and insects, human beings and animals. The natural processes that breakdown toxic chemicals in the environment have become the focus of much attention to develop safe and environmentfriendly deactivation technologies. Microbes and plants are among the most important biological agents that remove and degrade waste materials to enable their recycling in the environment. The present investigation was carried out with the aim of developing a microbial system for bioremediation of PCP polluted soils. A number of plant species were evaluated for their ability to tolerate different concentrations of pentachlorophenol (PCP) in the soil. The experiment was conducted for 30 days under pot culture conditions. The toxic effect of PCP on plants was studied by monitoring seed germination, plant growth and biomass. As the concentration of PCP was increased to 50 ppm, the inhibition of seed germination, plant growth and biomass was also increased. Although PCP had a negative effect on all plant species tested, maize and groundnut showed the maximum tolerance to PCP. Other tolerating crops included wheat, safflower, sunflower, and soybean. From the rhizosphere soil of the tolerant seedlings, as many as twenty seven PCP tolerant bacteria were isolated. From soybean, 8; sunflower, 3; safflower 8; maize 2; groundnut and wheat, 3 each isolates were made. They were screened for their PCP degradation potentials. HPLC analyses of PCP degradation revealed that the isolate MAZ-2 degraded PCP completely. The isolate MAZ-1 was the next best isolate with 90 per cent PCP degradation. These strains hold promise to be used in the bioremediation of PCP polluted soils.

Keywords: Biodegradation, pentachlorophenol, rhizobacteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
19 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: Carcinogenic risk, heavy metals, human health risk assessment, soil pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
18 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: Electrochemical remediation, pollution, soil contamination, total petroleum hydrocarbons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
17 Biodegradation of Carbazole By a Promising Gram-Negative Bacterium

Authors: G. B. Singh, S. Srivastava, N. Gupta

Abstract:

In the present work we report a gram negative bacterial isolate, from soil of a dye industry, with promising biorefining and bioremediation potential. This isolate (GBS.5) could utilize carbazole (nitrogen containing polycyclic aromatic hydrocarbon) as the sole source of nitrogen and carbon and utilize almost 98% of 3mM carbazole in 100 hours. The specific activity of our GBS.5 isolate for carbazole degradation at 30°C and pH 7.0 was found to be 11.36 μmol/min/g dry cell weight as compared to 10.4 μmol/min/g dry cell weight, the highest reported specific activity till date. The presence of car genes (the genes involved in denitrogenation of carbazole) was confirmed through PCR amplification.

Keywords: Biodenitrogenation, Biorefining, Carbazoledegradation, Crude oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
16 Bioremediation of MEG, DEG, and TEG: Potential of Burhead Plant and Soil Microorganisms

Authors: Pattrarat Teamkao, Paitip Thiravetyan

Abstract:

The aim of this work was to investigate the potential of soil microorganisms and the burhead plant, as well as the combination of soil microorganisms and plants to remediate monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) in synthetic wastewater. The result showed that a system containing both burhead plant and soil microorganisms had the highest efficiency in EGs removal. Around 100% of MEG and DEG and 85% of TEG were removed within 15 days of the experiments. However, the burhead plant had higher removal efficiency than soil microorganisms for MEG and DEG but the same for TEG in the study systems. The removal rate of EGs in the study system related to the molecular weight of the compounds and MEG, the smallest glycol, was removed faster than DEG and TEG by both the burhead plant and soil microorganisms in the study system.

Keywords: Ethylene glycol, burhead plant, soil microorganisms, phytoremediation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3301
15 Study of the Sorption of Biosurfactants from l. Pentosus on Sediments

Authors: Devesa-Rey R., Vecino X., Barral M.T., Cruz J.M., Moldes A.B

Abstract:

Losses of surfactant due to sorption need to be considered when selecting surfactant doses for soil bioremediation. The degree of surfactant sorption onto soil depends primarily on the organic carbon fraction of soil and the chemical nature of the surfactant. The use of biosurfactants in the control of the bioavailability of toxicants in soils is an attractive option because of their biodegradability. In this work biosurfactants were produced from a cheap raw material, trimming vine shoots, employing Lactobacillus pentosus. When biosurfactants from L. pentosus was added to sediments the surface tensión of the water containing the sediments rapidly increase, the same behaviour was observed with the chemical surfactant Tween 20; whereas sodyum dodecyl sulphate (SDS) kept the surface tension of the water around 36 mN/m. It means, that the behaviour of biosurfactants from L. pentosus is more similar to non-ionic surfactatns than to anionic surfactants.

Keywords: Biosurfactants, L. pentous, sediments, surface tension

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
14 Soil Remediation Technologies towards Green Remediation Strategies

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. “Green remediation”, a strategy based on “soft technologies”, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality.

Keywords: Bioremediation, green remediation, phytoremediation, remediation technologies, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
13 Phylogenetic Characterization of Atrazine-Degrading Bacteria Isolated from Agricultural Soil in Eastern Thailand

Authors: Sawangjit Sopid

Abstract:

In this study sugarcane field soils with a long history of atrazine application in Chachoengsao and Chonburi provinces have been explored for their potential of atrazine biodegradation. For the atrazine degrading bacteria isolation, the soils used in this study named ACS and ACB were inoculated in MS-medium containing atrazine. Six short rod and gram-negative bacterial isolates, which were able to use this herbicide as a sole source of nitrogen, were isolated and named as ACS1, ACB1, ACB3, ACB4, ACB5 and ACB6. From the 16S rDNA nucleotide sequence analysis, the isolated bacteria ACS1 and ACB4 were identified as Rhizobium sp. with 89.1-98.7% nucleotide identity, ACB1 and ACB5 were identified as Stenotrophomonas sp. with 91.0-92.8% nucleotide identity, whereas ACB3 and ACB6 were Klebsiella sp. with 97.4-97.8% nucleotide identity.

Keywords: Atrazine-degrading bacteria, bioremediation, Thai isolate bacteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
12 Characterization of Novel Atrazine-Degrading Klebsiella sp. isolated from Thai Agricultural Soil

Authors: Sawangjit Sopid

Abstract:

Atrazine, a herbicide widely used in sugarcane and corn production, is a frequently detected groundwater contaminant. An atrazine-degrading bacterium, strain KB02, was obtained from long-term atrazine-treated sugarcane field soils in Kanchanaburi province of Thailand. Strain KB02 had a rod-to-coccus morphological cycle during growth. Sequence analysis of the PCR product indicated that the 16S rRNA gene in strain KB02 was ranging from 97-98% identical to the same region in Klebsiella sp. Based on biochemical, physiological analysis and 16S rDNA sequence analysis of one representative isolate, strain KB02, the isolates belong to the genus Klebsiella in the family Enterobacteriaceae. Interestingly that the various primers for atzA, B and C failed to amplify genomic DNA of strain KB02. Whereas the expected PCR product of atzA, B and C were obtained from the reference strain, Arthrobacter sp. strain KU001.

Keywords: Atrazine, atz gene, Biodegradation, bioremediation, Klebsiella

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
11 Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology

Authors: S. W. Hong, Y. S. Choi, T. H. Chung, J. H. Song, H. S. Kim

Abstract:

Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.

Keywords: Anaerobic oxidation, microbial fuel cell, remediation, sediment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
10 Integrating Bioremediation and Phytoremediation to Clean up Polychlorinated Biphenyls Contaminated Soils

Authors: Petruzzelli G., Pedron F., Rosellini I., Tassi E., Gorini F., Barbafieri M.

Abstract:

This work involved the use of phytoremediation to remediate an aged soil contaminated with polychlorinated biphenyls (PCBs). At microcosm scale, tests were prepared using soil samples that have been collected in an industrial area with a total PCBs concentration of about 250 μg kg-1. Medicago sativa and Lolium italicum were the species selected in this study that is used as “feasibility test" for full scale remediation. The experiment was carried out with the addition of a mixture of randomly methylatedbeta- cyclodextrins (RAMEB). At the end of the experiment analysis of soil samples showed that in general the presence of plants has led to a higher degradation of most congeners with respect to not vegetated soil. The two plant species efficiencies were comparable and improved by RAMEB addition with a final reduction of total PCBs near to 50%. With increasing the chlorination of the congeners the removal percentage of PCBs progressively decreased.

Keywords: contaminated soil, feasibility test, phytoremediation, polychlorinated biphenyls

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
9 Enhance Halorespiration in Rhodopseudomonas palustris with Cytochrome P450cam System from Pseudomonas putida

Authors: Shou-Chen Lo, Chia-Ching Lin, Chieh-Chen Huang

Abstract:

To decompose organochlorides by bioremediation, co-culture biohydrogen producer and dehalogenation microorganisms is a useful method. In this study, we combined these two characteristics from a biohydrogen producer, Rhodopseudomonas palustris, and a dehalogenation microorganism, Pseudomonas putida, to enchance halorespiration in R. palustris. The genes encoding cytochrome P450cam system (camC, camA, and camB) from P. putida were expressed in R. palustris with designated expression plasmid. All tested strains were cultured to log phase then presented pentachloroethane (PCA) in media. The vector control strain could degrade PCA about 78% after 16 hours, however, the cytochrome P450cam system expressed strain, CGA-camCAB, could completely degrade PCA in 12 hours. While taking chlorinated aromatic, 3-chlorobenzoate, as sole carbon source or present benzoate as co-substrate, CGA-camCAB presented faster growth rate than vector control strain.

Keywords: cytochrome P450, halorespiration, nitrogen fixation, Rhodopseudomonas palustris CGA009

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
8 In situ Biodegradation of Endosulfan, Imidacloprid, and Carbendazim Using Indigenous Bacterial Cultures of Agriculture Fields of Uttarakhand, India

Authors: Geeta Negi, Pankaj, Anjana Srivastava, Anita Sharma

Abstract:

In the present study, presence of endosulfan, imidacloprid, carbendazim, in the soil /vegetables/cereals and water samples was observed in agriculture fields of Uttarakhand. In view of biodegradation of these pesticides, 9 bacterial isolates were recovered from the soil samples of the fields which tolerated endosulfan, imidacloprid, carbendazim from 100 to 200 µg/ml. Three bacterial consortia used for in vitro bioremediation experiments were consisted of 3 bacterial isolates for carbendazim, imidacloprid and endosulfan, respectively. Maximum degradation (87 and 83%) of α and β endosulfan respectively was observed in soil slurry by consortium. Degradation of Imidacloprid and carbendazim under similar conditions was 88.4 and 77.5% respectively. FT-IR analysis of biodegraded samples of pesticides in liquid media showed stretching of various bonds. GC-MS of biodegraded endosulfan sample in soil slurry showed the presence of nontoxic intermediates. A pot trial with Bacterial treatments lowered down the uptake of pesticides in onion plants.

Keywords: Biodegradation, carbendazim, consortium, Endosulfan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3345
7 Application of Genetic Engineering for Chromium Removal from Industrial Wastewater

Authors: N. K. Srivastava, M. K. Jha, I. D. Mall, Davinder Singh

Abstract:

The treatment of the industrial wastewater can be particularly difficult in the presence of toxic compounds. Excessive concentration of Chromium in soluble form is toxic to a wide variety of living organisms. Biological removal of heavy metals using natural and genetically engineered microorganisms has aroused great interest because of its lower impact on the environment. Ralston metallidurans, formerly known as Alcaligenes eutrophus is a LProteobacterium colonizing industrial wastewater with a high content of heavy metals. Tris-buffered mineral salt medium was used for growing Alcaligenes eutrophus AE104 (pEBZ141). The cells were cultivated for 18 h at 30 oC in Tris-buffered mineral salt medium containing 3 mM disodium sulphate and 46 mM sodium gluconate as the carbon source. The cells were harvested by centrifugation, washed, and suspended in 10 mM Tris HCl, pH 7.0, containing 46 mM sodium gluconate, and 5 mM Chromium. Interaction among induction of chr resistance determinant, and chromate reduction have been demonstrated. Results of this study show that the above bacteria can be very useful for bioremediation of chromium from industrial wastewater.

Keywords: Chromium, Genetic Engineering, IndustrialWastewater, Plasmid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
6 Screening of Minimal Salt Media for Biosurfactant Production by Bacillus spp.

Authors: Y. M. Al-Wahaibi, S. N. Al-Bahry, A. E. Elshafie, A. S. Al-Bemani, S. J. Joshi, A. K. Al-Bahri

Abstract:

Crude oil is a major source of global energy. The major problem is its widespread use and demand resulted is in increasing environmental pollution. One associated pollution problem is ‘oil spills’. Oil spills can be remediated with the use of chemical dispersants, microbial biodegradation and microbial metabolites such as biosurfactants. Four different minimal salt media for biosurfactant production by Bacillus isolated from oil contaminated sites from Oman were screened. These minimal salt media were supplemented with either glucose or sucrose as a carbon source. Among the isolates, W16 and B30 produced the most active biosurfactants. Isolate W16 produced better biosurfactant than the rest, and reduced surface tension (ST) and interfacial tension (IFT) to 25.26mN/m and 2.29mN/m respectively within 48h which are characteristics for removal of oil in contaminated sites. Biosurfactant was produced in bulk and extracted using acid precipitation method. Thin Layer Chromatography (TLC) of acid precipitate biosurfactant revealed two concentrated bands. Further studies of W16 biosurfactant in bioremediation of oil spills are recommended.

Keywords: Oil contamination, remediation, Bacillus spp, biosurfactant, surface tension, interfacial tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3620
5 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed and Temperature of Incubator Shaker

Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar

Abstract:

Microbes have been used to solve environmental problems for many years. The role of microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Treatment using microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida (P. putida), pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P. putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of P. putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. From mercury nitrate solution, a mercuryresistant bacterial strain which is able to reduce from ionic mercury to metallic mercury was used to reduce ionic mercury. The overall levels of mercury removal in this study were between 80% and 89%. The information obtained in this study is of fundamental for understanding of the survival of P. putida ATTC 49128 in mercury solution. Thus, microbial mercury removal is a potential bioremediation for wastewater especially in petrochemical industries in Malaysia.

Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
4 Bioremediation Potential in Recalcitrant Areas of PCE in Alluvial Fan Deposits

Authors: J. Herrero, D. Puigserver, I. Nijenhuis, K. Kuntze, J. M. Carmona

Abstract:

In the transition zone between aquifers and basal aquitards, the perchloroethene (PCE)-pools are more recalcitrant than those elsewhere in the aquifer. Although biodegradation of chloroethenes occur in this zone, it is a slow process and a remediation strategy is needed. The aim of this study is to demonstrate that combined strategy of biostimulation and in situ chemical reduction (ISCR) is more efficient than the two separated strategies. Four different microcosm experiments with sediment and groundwater of a selected field site where an aged pool exists at the bottom of a transition zone were designed under i) natural conditions, ii) biostimulation with lactic acid, iii) ISCR with zero-value iron (ZVI) and under iv) a combined strategy with lactic acid and ZVI. Biotic and abiotic dehalogenation, terminal electron acceptor processes and evolution of microbial communities were determined for each experiment. The main results were: i) reductive dehalogenation of PCE-pools occurs under sulfate-reducing conditions; ii) biostimulation with lactic acid supports more pronounced reductive dehalogenation of PCE and trichloroethene (TCE), but results in an accumulation of 1,2-cis-dichloroethene (cDCE); iii) ISCR with ZVI produces a sustained dehalogenation of PCE and its metabolites iv) combined strategy of biostimulation and ISCR results in a fast dehalogenation of PCE and TCE and a sustained dehalogenation of cisDCE. These findings suggest that biostimulation and ISCR with ZVI are the most suitable strategies for a complete reductive dehalogenation of PCE-pools in the transition zone and further to enable the dissolution of dense non-aqueous phase liquids.

Keywords: Aged PCE-pool, anaerobic microcosm experiment, biostimulation, in situ chemical reduction, natural attenuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
3 Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt

Authors: Ahmed F. Azmy , Amal E. Saafan, Tamer M. Essam, Magdy A. Amin, Shaban H. Ahmed

Abstract:

Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosa (PS1), and Pseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazinon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 10^12CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated.

Keywords: Acinetobacter baumannii, biodegradation, Malathion, organophosphate pesticides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3173