Invasion of Pectinatella magnifica in Freshwater Resources of the Czech Republic
Authors: J. Pazourek, K. Šmejkal, P. Kollár, J. Rajchard, J. Šinko, Z. Balounová, E. Vlková, H. Salmonová
Abstract:
Pectinatella magnifica (Leidy, 1851) is an invasive freshwater animal that lives in colonies. A colony of Pectinatella magnifica (a gelatinous blob) can be up to several feet in diameter large and under favorable conditions it exhibits an extreme growth rate. Recently European countries around rivers of Elbe, Oder, Danube, Rhine and Vltava have confirmed invasion of Pectinatella magnifica, including freshwater reservoirs in South Bohemia (Czech Republic). Our project (Czech Science Foundation, GAČR P503/12/0337) is focused onto biology and chemistry of Pectinatella magnifica. We monitor the organism occurrence in selected South Bohemia ponds and sandpits during the last years, collecting information about physical properties of surrounding water, and sampling the colonies for various analyses (classification, maps of secondary metabolites, toxicity tests). Because the gelatinous matrix is during the colony lifetime also a host for algae, bacteria and cyanobacteria (co-habitants), in this contribution, we also applied a high performance liquid chromatography (HPLC) method for determination of potentially present cyanobacterial toxins (microcystin-LR, microcystin-RR, nodularin). Results from the last 3-year monitoring show that these toxins are under limit of detection (LOD), so that they do not represent a danger yet. The final goal of our study is to assess toxicity risks related to fresh water resources invaded by Pectinatella magnifica, and to understand the process of invasion, which can enable to control it.
Keywords: Cyanobacteria, freshwater resources, Pectinatella magnifica invasion, toxicity monitoring.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1123628
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883References:
[1] Z. Balounová, E. Pechoušková, J. Rajchard, V. Joza, J. Šinko, “World-wide distribution of the Bryozoan Pectinatella magnifica (Leidy 1851),” European Journal of Environmental Sciences, vol. 3 (2), pp. 96-100, 2013.
[2] http://www.biolib.cz/en/taxonmap/id383/
[3] Z. Balounová, J. Rajchard, J. Švehla, L. Šmahel, “The onset of invasion of bryozoan Pectinatella magnifica in South Bohemia (Czech Republic),” Biologia vol. 66 (6), pp. 1091-1096, 2011.
[4] B. Figuerola, L. Sla-Comorera, C. Angulo-Preckler, J. Vázquez, M. J. Montes, C. García-Aljaro, E. Mercadé, A. R. Blanch, C. Avila, “Antimicrobial activity of Antarctic bryozoans: An ecological perspective with potential for clinical applications,” Marine Environmental Research, vol. 101, pp. 52-59, 2014.
[5] L. Peters, M. König, A. D. Wright, R. Pukall, E. Stackebrandt, L. Eberl, K. Riede, “Secondary metabolites of Flustra foliacea and their influence on bacteria,” Applied and Environmental Microbiology vol. 69, pp. 3469-3475, 2003.
[6] M. R. Prinsep, B. Yao, B. K. Nicholson, D. P. Gordon: “The pterocellins, bioactive alkaloids from the marine bryozoan Pterocella vesiculos,” Phytochemistry Reviews, vol. 3, pp. 325-331, 2004.
[7] D. J. Milanowski, K. R. Gustafson, J. A. Kelley, J. B. McMahon “Caulibugulones A-F, novel cytotoxic isoquinoline quinones and iminoquinones from the marine bryozoan Caulibugula intermis,” Journal of Natural Products, vol. 67, pp. 70-73, 2004.
[8] E. Vlková, J. Killer, V. Kmeť, V. Rada, Š. Musilová, V. Bunešová, Hovorková P, M. Božik, H. Salmonová, J. Rajchard, “Identification of microbiota associated with Pectinatella magnifica in South Bohemia,” Biologia, vol. 7, pp. 365-371, 2015.
[9] O. A. Odeyemi, A. Ahmad, G. Usup, “In-vitro antimicrobial activity of Aeromonas spp. isolated from estuary using different screening protocols,” International Journal of Pharmaceutical Sciences and Research, vol. 2, pp. 428-433, 2012.
[10] A. T. Fuller, G. Mellows, M. Woolford, G. T. Banks, K. D. Barrow, E. B. Chain, “Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens,” Nature, vol. 234, pp. 416–7, 1971.
[11] E. B. Chain, G. Mellows, “Pseudomonic acid. Part 3. Structure of pseudomonic acid,” B. Journal of the Chemical Society, Perkin Transaction, vol. 13, pp. 318–24, 1977.
[12] V. Rada, “Detection of Bifidobacterium species by enzymatic methods and antimicrobial susceptibility testing,” Biotechnology Techniques, vol. 11, pp. 909-912, 1997.
[13] W. Morse, “The chemical constitution of Pectinatella,” Science (New York, N.Y.), vol. 71 (1836), p. 265, 1930.
[14] “Invasive aquatic animal species,” Conference held in České Budějovice, 9.12. 2014, Book of Abstracts, ISBN 978-80-263-0863-8, L11, L14–16, P 1, 3–5.
[15] Z. Hanáková, J. Hošek, P. Babula, S. Dall’Acqua, J. Václavík, K. Šmejkal, “C-geranylated flavanones from Paulownia tomentosa fruits as potential anti-inflammatory compounds acting via inhibition of TNF-α production,” J. Nat. Prod., vol. 78 (4), pp. 850–863, 2015.
[16] A. Navrátilová, K. Schneiderová, D. Veselá, Z. Hanáková, A. Fontana, S. Dall'Acqua, J. Cvačka, G. Innocenti, J. Novotná, M. Urbanová, J. Pelletier, A. Čížek, H. Žemličková, K. Šmejkal, “Minor C-geranylated flavanones from Paulownia tomentosa fruits with MRSA antibacterial activity,” Phytochemistry, vol. 89, pp. 104-13, 2013.
[17] I. Šetlíková, O. Skácelová, J. Šinko, J. Rajchard, Z. Balounová, “Ecology of Pectinatella magnifica and associated algae and cyanobacteria,” Biologia, vol. 68 (6), pp. 1136-1141, 2013.
[18] P. Babica, J. Kohoutek, L. Bláha, O. Adamovský, B. Maršálek, „Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents,” Analytical and Bioanalytical Chemistry, vol. 385, pp. 1545-1551, 2006.
[19] L. Bláhova, P. Babica, O. Adamovský, J. Kohoutek, B. Maršálek, L. Bláha, “Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks,” Environmental Chemistry Letters, vol. 6, pp. 223-227, 2008.
[20] S. Faltermann, R. Pretot, J. Pernthaler, K. Fent, “Comparative effects of nodularin and microcystin-LR in zebrafish: 1. Uptake by organic anion transporting polypeptide Oatp1d1 (Slco1d1),” Aquatic Toxicology, vol. 171, pp. 69-76, 2016.
[21] L. Chen, J. Chen, X. Z. Zhang, P. Xie, “A review of reproductive toxicity of microcystins,” Journal of Hazardous Materials, vol. 301, pp. 381-399, 2016.
[22] Guidelines for drinking water quality. World Health Organization, Geneva, ISBN 92 4 154638 7, p.407, 2004.
[23] R. S. Porter, T. K. Chen, “High-performance liquid chromatographic analysis of mupirocin in polyethylene glycols 400 and 3350 using dual ultraviolet and evaporative light scattering detection,” Journal of Chromatography A, vol. 732, pp. 399-402, 1996.
[24] D. Fajkusová, M. Peško, S. Keltošová, J. Guo, Z. Oktabec, M. Vejsová, P. Kollár, A. Coffey, J. Csollei, K. Králová, J. Jampílek, “Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles,” Bioorganic & Medicinal Chemistry, vol. 20(24), pp. 7059-7068, 2012.
[25] E. Sieniawska, T. Baj, J. Dudka, R. Gieroba, L. Swiatek, B. Rajtar, K. Glowniak, M. Polz-Dacewicz, “Cytotoxicity, antioxidant activity and an effect on CYP3A4 and CYP2D6 of Mutellina purpurea L. extracts,” Food Chem Toxicol., vol. 52, pp. 188-92, 2013.
[26] S. C. Gad, In: General and Applied Toxicology, B. Ballantyne, T. Marrs, T. Syversen, (Eds.), Grove's Dictionaries Inc., USA, 1999.