@article{(Open Science Index):https://publications.waset.org/pdf/2087,
	  title     = {Hydrogen and Diesel Combustion on a Single Cylinder Four Stroke Diesel Engine in Dual Fuel mode with Varying Injection Strategies},
	  author    = {Probir Kumar Bose and  Rahul Banerjee and  Madhujit Deb},
	  country	= {},
	  institution	= {},
	  abstract     = {The present energy situation and the concerns
about global warming has stimulated active research interest
in non-petroleum, carbon free compounds and non-polluting
fuels, particularly for transportation, power generation, and
agricultural sectors. Environmental concerns and limited
amount of petroleum fuels have caused interests in the
development of alternative fuels for internal combustion (IC)
engines. The petroleum crude reserves however, are declining
and consumption of transport fuels particularly in the
developing countries is increasing at high rates. Severe
shortage of liquid fuels derived from petroleum may be faced
in the second half of this century. Recently more and more
stringent environmental regulations being enacted in the USA
and Europe have led to the research and development
activities on clean alternative fuels. Among the gaseous fuels
hydrogen is considered to be one of the clean alternative fuel.
Hydrogen is an interesting candidate for future internal
combustion engine based power trains. In this experimental
investigation, the performance and combustion analysis were
carried out on a direct injection (DI) diesel engine using
hydrogen with diesel following the TMI(Time Manifold
Injection) technique at different injection timings of 10
degree,45 degree and 80 degree ATDC using an electronic
control unit (ECU) and injection durations were controlled.
Further, the tests have been carried out at a constant speed of
1500rpm at different load conditions and it can be observed
that brake thermal efficiency increases with increase in load
conditions with a maximum gain of 15% at full load
conditions during all injection strategies of hydrogen. It was
also observed that with the increase in hydrogen energy share
BSEC started reducing and it reduced to a maximum of 9% as
compared to baseline diesel at 10deg ATDC injection during
maximum injection proving the exceptional combustion
properties of hydrogen.},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {6},
	  number    = {10},
	  year      = {2012},
	  pages     = {2100 - 2106},
	  ee        = {https://publications.waset.org/pdf/2087},
	  url   	= {https://publications.waset.org/vol/70},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 70, 2012},
	}