Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt

Authors: Ahmed F. Azmy , Amal E. Saafan, Tamer M. Essam, Magdy A. Amin, Shaban H. Ahmed

Abstract:

Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosa (PS1), and Pseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazinon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 10^12CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated.

Keywords: Acinetobacter baumannii, biodegradation, Malathion, organophosphate pesticides.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099190

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3446

References:


[1] A. H. Mansee, W. Chen, and A. Mulchandani, “Detoxification of the organophosphate nerve agent coumaphos using organophosphorus hydrolase immobilized on cellulose materials,” J. Ind. Microbiol. Biotechnol, vol. 32, no. 11–12, pp. 554–560, Dec. 2005.
[2] B. K. Singh, A. Walker, J. A. W. Morgan, and D. J. Wright, “Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soil,” Appl.Environ.Microbiol., vol. 70, no. 8, pp. 4855–4863, Aug. 2004.
[3] B. S. Anderson, J. W. Hunt, B. M. Phillips, P. A. Nicely, V. de Vlaming, V. Connor, N. Richard, and R. S. Tjeerdema, “Integrated assessment of the impacts of agricultural drain water in the Salinas River (California, USA),” Environ. Pollut. (Barking, Essex : 1987), vol. 124, no. 3, pp. 523–532, Jan. 2003.
[4] S. Malghani, N. Chatterjee, X. Hu, and L. Zejiao, “Isolation and characterization of a profenofos degrading bacterium,” J. Environ. Sci., vol. 21, no. 11, pp. 1591–1597, Jan. 2009.
[5] S. Chen, C. Liu, C. Peng, H. Liu, M. Hu, and G. Zhong, “Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporiumcladosporioides Hu-01,” PloS one, vol. 7, no. 10, p. e47205, Jan. 2012.
[6] N. G. Ternan, J. W. M. Grath, G. M. Mullan, and J. P. Quinn, “Review: Organophosphonates: occurrence, synthesis and biodegradation by microorganisms,” World J. Microbiol. Biotechnol., vol. 14, no. 5, pp. 635–647, Oct. 1998.
[7] F. N. Yasouri, “Plasmid mediated degradation of diazinon by three bacterial strains Pseudomonassp.,Flavobacterium sp. and Agrobacteriumsp,” Asian J. Chem., vol. 18, pp. 2437–2444, 2006.
[8] S. R. Sørensen, C. N. Albers, and J. Aamand, “Rapid mineralization of the phenyl urea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium.,” Appl. Environ. Microbiol., vol. 74, no. 8, pp. 2332–2340, Apr. 2008.
[9] M. Cycoń, M. Wójcik, and Z. Piotrowska-Seget, “Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil,” Chemosphere, vol. 76, no. 4, pp. 494–501, Jul. 2009.
[10] P. Lu, Q. Li, H. Liu, Z. Feng, X. Yan, Q. Hong, and S. Li, “Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1,” Bioresour. Technol., vol. 127, pp. 337–342, Jan. 2013.
[11] N. E. Barlas, “Toxicological assessment of biodegraded malathion in Albino Mice,” Bull. Environ.Contam.Toxicol., vol. 57, no. 5, pp. 705–712, Nov. 1996.
[12] S. K. Goda, I. E. Elsayed, T. A. Khodair, W. El-Sayed, and M. E. Mohamed, “Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylesterase in soil bacteria,” Biodegradation, vol. 21, no. 6, pp. 903–913, Nov. 2010.
[13] D. P. Singh,J. I. S. Khattar, J. Nadda, Y. Singh, A. Garg, N. Kaur, and A. Gulati, “Chlorpyrifos degradation by thecyanobacteriumSynechocystis sp. strain PUPCCC 64,” Environ. Sci. Pollut. Res. Int., vol. 18, no. 8, pp. 1351–1359, Sep. 2011.
[14] S. A. Omar, “Availability of phosphorus and sulfur of insecticide origin by fungi,” Biodegradation, vol. 9, no. 5, pp. 327–336, Jan. 1998.
[15] Y.Abdelmawgod, “Molecular characterization of malathion biodegrading enzymes extracted from Egyptian bacterial isolates,” NewEgyp. J. Microbiol., vol. 10, pp. 226–236, 2005.
[16] Z. K. Mohamed, M. A. Ahmed, N. A. Fetyan, and S. M. Elnagdy, “Isolation and molecular characterisation of malathion-degrading bacterial strains from waste water in Egypt,” J. Advanc. Res., vol. 1, no. 2, pp. 145–149, Apr. 2010.
[17] I. Horne, T. D. Sutherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott, “Identification of an opd (organophosphate degradation) gene in an Agrobacterium Isolate,” Appl. Environ. Microbiol., vol. 68, no. 7, pp. 3371–3376, Jul. 2002.
[18] D. F. Scott, T. L. Chacko, D. M. Maxwell, J. J. Schlager, and K. D. Lanclos, “Expression and partial purification of a recombinant secretory form of human liver carboxylesterase,”Protein.Expr.Purif., vol. 17, no. 1, pp. 16–25, Oct. 1999.
[19] C.-W.Cao, J. Zhang, X.-W.Gao, P. Liang, and H.-L.Guo, “Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii(Glover),” Pestic. Biochem. Physiol., vol. 90, no. 3, pp. 175–180, Mar. 2008.
[20] J. G. Vontas, G. J. Small, and J. Hemingway, “Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvatalugens (Stal),” Insect Mol. Biol., vol. 9, no. 6, pp. 655–660, Dec. 2000.
[21] J. Zhang, W. Lan, C. Qiao, H. Jiang, A. Mulchandani, and W. Chen, “Bioremediation of organophosphorus pesticides by surface-expressed carboxylesterase from mosquito on Escherichia coli.,” Biotechnol. Prog., vol. 20, no. 5, pp. 1567–1571, 2004.
[22] A. K. Singh, N. S. Srikanth, O. P. Malhotra, and P. K. Seth, “Characterization of carboxylesterase from malathion degrading bacterium:Pseudomonas sp. M-3,” Bull. Environ. Contam.Toxicol., vol. 42, no. 6, pp. 860–867, Jun. 1989.
[23] T. Cáceres, W. He, R. Naidu, and M. Megharaj, “Toxicity of chlorpyrifos and TCP alone and in combination to Daphnia carinata: the influence of microbial degradation in natural water,” Water Res., vol. 41, no. 19, pp. 4497–4503, Nov. 2007.
[24] T. P. Cáceres, M. Megharaj, S. Malik, M. Beer, and R. Naidu, “Hydrolysis of fenamiphos and its toxic oxidation products by Microbacterium sp. in pure culture and groundwater.”Bioresour. Technol., vol. 100, no. 10, pp. 2732–2736, May 2009.
[25] Z. K. Mohamed, M. A. Ahmed, N. A. Fetyan, and S. M. Elnagdy, “Isolation and molecular characterisation of malathion-degrading bacterial strains from waste water in Egypt,”J. Advanc. Res. vol. 1, no. 2, pp. 145–149, Apr. 2010.
[26] D. D. Focht, Microbiological procedures for biodegradation research in Methods of soil analysis, Part 2—Microbiological and Biochemical Properties, vol. sssa books series 5, R.E. Weaver, J.S. Angles and P.S.Bottomeley, Editors. Soil Science Society of America, 1994, pp. 407–426.
[27] S. T. Holt, J.G. Krieg, N.R. Sneath, P.H.A. Staley, J.T.Williams, Bergry’s manual of Determinative Bacteriology, ninth ed. Baltimore, 1994.
[28] J.Sambrook , E.F. Fritsch, T.Maniatis, Molecular Cloning: ALaboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
[29] C. Yang, N. Liu, X. Guo, and C. Qiao, “Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil.,” FEMS Microbiol. Lett., vol. 265, no. 1, pp. 118–125, Dec. 2006.
[30] S. Anwar, F. Liaquat, Q. M. Khan, Z. M. Khalid, and S. Iqbal, “Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1.,” J. Hazard. Mater., vol. 168, no. 1, pp. 400–405, Aug. 2009.
[31] A. W. Bourquin, “Degradation of malathion by salt-marsh microorganisms.,” App.Environ. Microbiol., vol. 33, no. 2, pp. 356–362, Feb. 1977.
[32] Y.-H.Kim, J.-Y.Ahn, S.-H. Moon, and J. Lee, “Biodegradation and detoxification of organophosphate insecticide, malathion by Fusariumoxysporum f. sp. pisicutinase.,” Chemosphere, vol. 60, no. 10, pp. 1349–1355, Sep. 2005.
[33] W. FritscheandM.Hofrichter, “Aerobic Degradation by Microorganisms, in Biotechnology: Environmental Processes II, Volume 11b, Second Edition, Second Edition (eds H.-J. Rehm and G. Reed), Wiley-VCH Verlag GmbH, Weinheim, Germany.
[34] S. S. Nazia, S. R. Bharti, and M. P. Sinha“Investigations on growth of soil bacterial communities with relation to pesticides,” J. Bio.Innov., vol. 2, no. 1, pp. 23–32, 2013.
[35] D. G. Karpouzas, A. Fotopoulou, U. Menkissoglu-Spiroudi, and B. K. Singh, “Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates.,” FEMS Microbiol. Ecol., vol. 53, no. 3, pp. 369–378, Aug. 2005.
[36] B. K. Singh and A. Walker, “Microbial degradation of organophosphorus compounds,” FEMS Microbiol. Rev., vol. 30, no. 3, pp. 428–471, May 2006.
[37] K. Tago, S. Yonezawa, T. Ohkouchi, T. Ninomiya, M. Hashimoto, and M. Hayatsu, “A Novel organophosphorus pesticide hydrolase gene encoded on a plasmid in Burkholderia sp. Strain NF100,” Microbes Environ., vol. 21, no. 1, pp. 53–57, 2006.
[38] M. Hayatsu, M. Hirano, and S. Tokuda, “Involvement of two plasmids in fenitrothion degradation byBurkholderia sp. strain NF100,”App.Environ.Microbiol., vol. 66, no. 4, pp. 1737–1740, Apr. 2000.
[39] R. Zhang, Z. Cui, X. Zhang, J. Jiang, J.-D. Gu, and S. Li, “Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer,” Biodegradation, vol. 17, no. 5, pp. 465–472, Oct. 2006.
[40] C. Vidya Lakshmi, M. Kumar, and S. Khanna, “Biotransformation of chlorpyrifos and bioremediation of contaminated soil,” Int. Biodeterior. Biodegradation, vol. 62, no. 2, pp. 204–209, Sep. 2008.
[41] H.H.Sabit, O.M.Said, A.E. Shamseldin,and K. El-Sayed, “Molecular identification of acinetobacter isolated from Egyptian dumpsite as potential bacteria to degrade malathion,” Int.J.Acad.Res., vol. 3, no. 4, pp. 84–90, 2011.
[42] B. Singh, J. Kaur, and K. Singh, “Biodegradation of malathion by Brevibacillussp. strain KB2 and Bacillus cereus strain PU.” WorldJ. Microbiol.Biotechnol., vol. 28, no. 3, pp. 1133–1141, Mar. 2012.
[43] X. Li, J. He, and S. Li, “Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of thempdgene.,” Res. Microbiol., vol. 158, no. 2, pp. 143–149, Mar. 2007.
[44] Y. Feng, K. D. Racke, and J. Bollag, “Isolation and characterization of a chlorinated-pyridinol-degrading bacterium.,” J. Appl. Environ.Microbiol., vol. 63, no. 10, pp. 4096–4098, Oct. 1997.
[45] L. Yang, Y.-H.Zhao, B.-X.Zhang, C.-H. Yang, and X. Zhang, “Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium.,” FEMS Microbiol. Lett., vol. 251, no. 1, pp. 67–73, Oct. 2005.
[46] D. K. Singh, “Utilization of monocrotophos as phosphorus source by Pseudomonas aeruginosa F10B and Clavibactermichiganense subsp. insidiosum SBL 11,” Can. J. Microbiol., vol. 49, no. 2, pp. 101–109, Feb. 2003.
[47] C. M. Serdar and D. T. Gibson, “Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta,” Nat. Biotechnol., vol. 3, no. 6, pp. 567–571, Jun. 1985.
[48] S. E. Lowe, M. K. Jain, and J. G. Zeikus, “Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.,” Microbiol. Rev., vol. 57, no. 2, pp. 451–509, Jun. 1993.
[49] V. Kannan and V. Vanitha, “Influence of assay medium on degradation of malathion by Serratiamarcescens,” Indian J. Biotechnol., vol. 4, pp. 277–283, 2005.
[50] D. G. Karpouzas and A. Walker, “Factors influencing the ability of Pseudomonas putida strains epI and II to degrade the organophosphate ethoprophos,” J. Appl. Microbiol., vol. 89, no. 1, pp. 40–48, Jul. 2000.
[51] M. A. Ramadan, O. M. E-Tayeb, and M. Alexander, “Inoculum size as a factor limiting success of inoculation for biodegradation,” Appl.Environ.Microbiol., vol. 56, no. 5, pp. 1392–1396, May 1990.
[52] Y. Comeau, C. Greer, and R. Samson, “Role of inoculum preparation and density on the bioremediation of 2,4-D-contaminated soil by bioaugmentation,” Appl. Microbiol. Biotechnol., vol. 38, no. 5, pp. 681-689,Feb. 1993.
[53] S. Xie, J. Liu, L. Li, and C. Qiao, “Biodegradation of malathion by Acinetobacterjohnsonii MA19 and optimization of cometabolism substrates,” J.Environ.Sci. (China), vol. 21, no. 1, pp. 76–82, Jan. 2009.
[54] M. H. Kim, O. J. Hao, and N. S. Wang, “Acinetobacter isolates from different activated sludge processes: characteristics and neural network identification,” FEMS Microbiol. Ecol., vol. 23, no. 3, pp. 217–227, Jan. 2006.
[55] R. D. Richins, I. Kaneva, A. Mulchandani, and W. Chen, “Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase,” Nat..Biotechnol. vol. 15, no. 10, pp. 984–987, Oct. 1997.
[56] L. Girbal, J. L. Rols, and N. D. Lindley, “Growth rate influences reductive biodegradation of the organophosphorus pesticide demeton by Corynebacteriumglutamicum,” Biodegradation, vol. 11, no. 6, pp. 371–376, Jan. 2000.
[57] R. J. Grant and W. B. Betts, “Mineral and carbon usage of two synthetic pyrethroid degrading bacterial isolates.” J. Appl. Microbiol., vol. 97, no. 3, pp. 656–662, Jan. 2004.
[58] C. E. Aziz, G. Georgiou, and G. E. Speitel, “Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures using M. trichosporiumOB3b PP358,” Biotechnol.Bioeng., vol. 65, no. 1, pp. 100–107, Oct. 1999.
[59] D. Vallenet, P. Nordmann, V. Barbe, L. Poirel, S. Mangenot, E. Bataille, C. Dossat, S. Gas, A. Kreimeyer, P. Lenoble, S. Oztas, J. Poulain, B. Segurens, C. Robert, C. Abergel, J.-M. Claverie, D. Raoult, C. Médigue, J. Weissenbach, and S. Cruveiller, “Comparative analysis of Acinetobacters: three genomes for three lifestyles,” PloS one, vol. 3, no. 3, pp. e1805-1805, Jan. 2008.
[60] I. Kaneva, A. Mulchandani, and W. Chen, “Factors influencing parathion degradation by recombinant Escherichia coli with surface-expressed organophosphorushydrolase.,” Biotechnol. Progr., vol. 14, no. 2, pp. 275–278, 1998.
[61] S. Chen and M. Alexander, “Reasons for the acclimation for 2,4-D biodegradation in Lake Water,” J. Environ. Qual., vol. 18, no. 2, p. 153-156, 1989.
[62] J. K. Struthers, K. Jayachandran, and T. B. Moorman, “Biodegradation of atrazine by Agrobacterium radiobacterJ14a and use of this strain in bioremediation of contaminated soil,” Appl. Envir.Microbiol., vol. 64, no. 9, pp. 3368–3375, Sep. 1998.
[63] K. Yoshii, Y. Tonogai, J. Katakawa, H. Ueno, and K. Nakamuro, “Identification of carboxylesterase metabolites of residual malathion in Wheat Kernels using semi-micro radio liquid chromatography,”J.Health Sci., vol. 53, no. 1, pp. 92–98, 2007.
[64] N. Prim, F. I. Pastor, and P. Diaz, “Cloning and characterization of a bacterial cell-bound type B carboxylesterase from Bacillus sp. BP-7,” Curr.Microbiol., vol. 42, no. 4, pp. 237–240, Apr. 2001.
[65] H. E. Ewis, A. T. Abdelal, and C.-D.Lu, “Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillusstearothermophilus,” Gene, vol. 329, pp. 187–195, Mar. 2004.
[66] D. G. Karpouzas and B. K. Singh, "Microbial degradation of organophosphorusxenobiotics : Metabolic Pathways and Molecular Basis", Adv. Microb. Physiol. 2006;51:119-vol. 51, no. 06, pp.119-185, 2006.