Search results for: Heat equation.
1920 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink
Authors: Bandaris Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.
Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32221919 Effect of Sintering Temperature Curve in Wick Manufactured for Loop Heat Pipe
Authors: Shen-Chun Wu, Chuo-Jeng Huang, Wun-Hong Yang, Jy-Cheng Chang, Chien-Chun Kung
Abstract:
This investigation examines the effect of the sintering temperature curve in manufactured nickel powder capillary structure (wick) for a loop heat pipe (LHP). The sintering temperature curve is composed of a region of increasing temperature; a region of constant temperature and a region of declining temperature. The most important region is that in which the temperature increases, as an index in the stage in which the temperature increases. The wick of nickel powder is manufactured in the stage of fixed sintering temperature and the time between the stage of constant temperature and the stage of falling temperature. When the slope of the curve in the region of increasing temperature is unity (equivalent to 10 °C/min), the structure of the wick is complete and the heat transfer performance is optimal. The result of experiment test demonstrates that the heat transfer performance is optimal at 320W; the minimal total thermal resistance is approximately 0.18°C/W, and the heat flux is 17W/cm2; the internal parameters of the wick are an effective pore radius of 3.1 μm, a permeability of 3.25×10-13m2 and a porosity of 71%.Keywords: Loop heat pipe (LHP), capillary structure (wick), sintered temperature curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20941918 Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels
Authors: Mahmoud M. Tash
Abstract:
The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed.Keywords: Hot Forging, hot rolling, heat treatment, hardness (hv), impact toughness (j), microstructure, low alloy steels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34541917 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA
Authors: G. Parmar, R. Prasad, S. Mukherjee
Abstract:
The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.
Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31891916 Coil and Jacket's Effects on Internal Flow Behavior and Heat Transfer in Stirred Tanks
Authors: B. Lakghomi, E. Kolahchian, A. Jalali, F. Farhadi
Abstract:
Different approaches for heating\cooling of stirred tanks, coils and jackets, are investigated using computational fluid dynamics (CFD).A time-dependant sliding mesh approach is applied to simulate the flow in both conditions. The investigations are carried out under the turbulent flow conditions for a Rushton impeller and heating elements are considered isothermal. The flow behavior and temperature distribution are studied for each case and heat transfer coefficient is calculated. Results show different velocity profiles for each case. Unsteady temperature distribution is not similar for different cases .In the case of the coiled stirred vessel more uniform temperature and higher heat transfer coefficient is resulted.
Keywords: CFD, coil and jacket, heat transfer, stirred tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49121915 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order
Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi
Abstract:
In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19421914 Stability Analysis in a Fractional Order Delayed Predator-Prey Model
Authors: Changjin Xu, Peiluan Li
Abstract:
In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given to show the effectiveness of the approach presented in this paper.
Keywords: Fractional predator-prey model, laplace transform, characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24971913 Investigation of Heat Transfer by Natural Convection in an Open Channel
Authors: Mahmoud S. Ahmed, Hany A. Mohamed, Mohamed A. Omara, Mohamed F. Abdeen
Abstract:
Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels.
Keywords: Natural heat transfer convection, constant heat flux, open channels, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23621912 Free Convection in an Infinite Porous Dusty Medium Induced by Pulsating Point Heat Source
Authors: K. Kannan, V. Venkataraman
Abstract:
Free convection effects and heat transfer due to a pulsating point heat source embedded in an infinite, fluid saturated, porous dusty medium are studied analytically. Both velocity and temperature fields are discussed in the form of series expansions in the Rayleigh number, for both the fluid and particle phases based on the mean heat generation rate from source and on the permeability of the porous dusty medium. This study is carried out by assuming the Rayleigh number small and the validity of Darcy-s law. Analytical expressions for both phases are obtained for second order mean in both velocity and temperature fields and evolution of different wave patterns are observed in the fluctuating part. It has been observed that, at the vicinity of the origin, the second order mean flow is influenced only by relaxation time of dust particles and not by dust concentration.
Keywords: Pulsating point heat source, azimuthal velocity, porous dusty medium, Darcy's law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631911 Simulation of Multiphase Flows Using a Modified Upwind-Splitting Scheme
Authors: David J. Robbins, R. Stewart Cant, Lynn F. Gladden
Abstract:
A robust AUSM+ upwind discretisation scheme has been developed to simulate multiphase flow using consistent spatial discretisation schemes and a modified low-Mach number diffusion term. The impact of the selection of an interfacial pressure model has also been investigated. Three representative test cases have been simulated to evaluate the accuracy of the commonly-used stiffenedgas equation of state with respect to the IAPWS-IF97 equation of state for water. The algorithm demonstrates a combination of robustness and accuracy over a range of flow conditions, with the stiffened-gas equation tending to overestimate liquid temperature and density profiles.
Keywords: Multiphase flow, AUSM+ scheme, liquid EOS, low Mach number models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20511910 Study on Cross-flow Heat Transfer in Fixed Bed
Authors: Hong-fang Ma, Hai-tao Zhang, Wei-yong Ying, Ding-ye Fang
Abstract:
Radial flow reactor was focused for large scale methanol synthesis and in which the heat transfer type was cross-flow. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer was investigated and the results showed that the temperature profile of the area in front of the heating pipe was slightly affected by all the operating conditions. The main area whose temperature profile was influenced was the area behind the heating pipe. The heat transfer direction according to the air flow directions. In order to provide the basis for radial flow reactor design calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which was calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated value showed that the calculated value fit the experimental data very well and the formulas could be used for reactor designing calculation.Keywords: Cross-flow, Heat transfer, Fixed bed, Mathematical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741909 Bifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions
Authors: Hailong Zhu, Zhaoxiang Li
Abstract:
Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In this paper, bifurcation method is applied to solving semilinear elliptic equations which are with homogeneous Dirichlet boundary conditions in 2D. Using this method, nontrivial numerical solutions will be computed and visualized in many different domains (such as square, disk, annulus, dumbbell, etc).
Keywords: Semilinear elliptic equations, positive solutions, bifurcation method, isotropy subgroups.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481908 Investigations of Natural Convective Heat Transfer in Rectangular Thermal Passages
Authors: Hussain H. Al-Kayiem, Ahmed K. Hussein, Toh Seng Peow
Abstract:
The evaluation of the convective heat transfer of flow in passages with rectangular cross section is still of interest for the heat transfer investigators, as in the air heater solar collectors. The aim of this paper is to present investigation results on the natural convection heat transfer in a solar air heater. The effect of the channel length as heat transfer surface and the inclination of the passage were investigated. The results were obtained experimentally and theoretically. For that, an experimental test rig was fabricated with channel lengths of 1m, 1.5m, and 2m. For each length, the air outlet and inlet temperatures, absorber and cover temperatures, solar radiation intensity and air flow rate were measured at 10o, 30o, 50o, 70o, and 90o tilt angles. Measurements were recorded every 2 hours interval to investigate the transient behavior of the system. The experimental and theoretical results are presented in terms of Nu number versus Ra number and discussed. The percentages of differences between experimental and theoretical results are within the margin of 6% to 13%, effectively. It is recommended to extend the investigation to study the same configurations with different artificial surface roughing by ribs or pins.
Keywords: Convective heat transfer, Flat plate, Natural convection, Passage flow, Solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20661907 Design of a Compact Herriott Cell for Heat Flux Measurement Applications
Authors: R. G. Ramírez-Chavarría, C. Sánchez-Pérez, V. Argueta-Díaz
Abstract:
In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.Keywords: Heat flux, herriott cell, optical beam deflection, thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28181906 Quantitative Changes in Biofilms of a Seawater Tubular Heat Exchanger Subjected to Electromagnetic Fields Treatment
Authors: Sergio Garcia, Alfredo Trueba, Luis M. Vega, Ernesto Madariaga
Abstract:
Biofilms adhesion is one of the more important cost of industries plants on wide world, which use to water for cooling heat exchangers or are in contact with water. This study evaluated the effect of Electromagnetic Fields on biofilms in tubular heat exchangers using seawater cooling. The results showed an up to 40% reduction of the biofilm thickness compared to the untreated control tubes. The presence of organic matter was reduced by 75%, the inorganic mater was reduced by 87%, and 53% of the dissolved solids were eliminated. The biofilm thermal conductivity in the treated tube was reduced by 53% as compared to the control tube. The hardness in the effluent during the experimental period was decreased by 18% in the treated tubes compared with control tubes. Our results show that the electromagnetic fields treatment has a great potential in the process of removing biofilms in heat exchanger.Keywords: Biofilm, heat exchanger, electromagnetic fields, seawater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6571905 Solution of Density Dependent Nonlinear Reaction-Diffusion Equation Using Differential Quadrature Method
Authors: Gülnihal Meral
Abstract:
In this study, the density dependent nonlinear reactiondiffusion equation, which arises in the insect dispersal models, is solved using the combined application of differential quadrature method(DQM) and implicit Euler method. The polynomial based DQM is used to discretize the spatial derivatives of the problem. The resulting time-dependent nonlinear system of ordinary differential equations(ODE-s) is solved by using implicit Euler method. The computations are carried out for a Cauchy problem defined by a onedimensional density dependent nonlinear reaction-diffusion equation which has an exact solution. The DQM solution is found to be in a very good agreement with the exact solution in terms of maximum absolute error. The DQM solution exhibits superior accuracy at large time levels tending to steady-state. Furthermore, using an implicit method in the solution procedure leads to stable solutions and larger time steps could be used.Keywords: Density Dependent Nonlinear Reaction-Diffusion Equation, Differential Quadrature Method, Implicit Euler Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22731904 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System
Authors: J. B. Qin, X. H. Jiang, Y. T. Ge
Abstract:
The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged. To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.
Keywords: Dissolved gases in water, heat pump, domestic water heating system, microbubble formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8411903 Uniform Solution on the Effect of Internal Heat Generation on Rayleigh-Benard Convection in Micropolar Fluid
Authors: Izzati K. Khalid, Nor Fadzillah M. Mokhtar, Norihan Md. Arifin
Abstract:
The effect of internal heat generation is applied to the Rayleigh-Benard convection in a horizontal micropolar fluid layer. The bounding surfaces of the liquids are considered to be rigid-free, rigid-rigid and free-free with the combination of isothermal on the spin-vanishing boundaries. A linear stability analysis is used and the Galerkin method is employed to find the critical stability parameters numerically. It is shown that the critical Rayleigh number decreases as the value of internal heat generation increase and hence destabilize the system.
Keywords: Internal heat generation, micropolar fluid, rayleighbenard convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24321902 Unsteady Temperature Distribution in a Finite Functionally Graded Cylinder
Authors: A. Amiri Delouei
Abstract:
In the current study, two-dimensional unsteady heat conduction in a functionally graded cylinder is studied analytically. The temperature distribution is in radial and longitudinal directions. Heat conduction coefficients are considered a power function of radius both in radial and longitudinal directions. The proposed solution can exactly satisfy the boundary conditions. Analytical unsteady temperature distribution for different parameters of functionally graded cylinder is investigated. The achieved exact solution is useful for thermal stress analysis of functionally graded cylinders. Regarding the analytical approach, this solution can be used to understand the concepts of heat conduction in functionally graded materials.
Keywords: Functionally graded materials, unsteady heat conduction, cylinder, Temperature distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12051901 Experiment and Simulation of Laser Effect on Thermal Field of Porcine Liver
Authors: K.Ting, K. T. Chen, Y. L. Su, C. J. Chang
Abstract:
In medical therapy, laser has been widely used to conduct cosmetic, tumor and other treatments. During the process of laser irradiation, there may be thermal damage caused by excessive laser exposure. Thus, the establishment of a complete thermal analysis model is clinically helpful to physicians in reference data. In this study, porcine liver in place of tissue was subjected to laser irradiation to set up the experimental data considering the explored impact on surface thermal field and thermal damage region under different conditions of power, laser irradiation time, and distance between laser and porcine liver. In the experimental process, the surface temperature distribution of the porcine lever was measured by the infrared thermal imager. In the part of simulation, the bio heat transfer Pennes-s equation was solved by software SYSWELD applying in welding process. The double ellipsoid function as a laser source term is firstly considered in the prediction for surface thermal field and internal tissue damage. The simulation results are compared with the experimental data to validate the mathematical model established here in.
Keywords: laser infrared thermal imager, bio-heat transfer, double ellipsoid function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20581900 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus
Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani
Abstract:
Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.
Keywords: Natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5321899 About the Instability Modes of Current Sheet in Wide Range of Frequencies
Authors: V. V. Lyahov, V. M. Neshchadim
Abstract:
We offer a new technique for research of stability of current sheaths in space plasma taking into account the effect of polarization. At the beginning, the found perturbation of the distribution function is used for calculation of the dielectric permeability tensor, which simulates inhomogeneous medium of a current sheath. Further, we in the usual manner solve the system of Maxwell's equations closed with the material equation. The amplitudes of Fourier perturbations are considered to be exponentially decaying through the current sheath thickness. The dispersion equation follows from the nontrivial solution requirement for perturbations of the electromagnetic field. The resulting dispersion equation allows one to study the temporal and spatial characteristics of instability modes of the current sheath (within the limits of the proposed model) over a wide frequency range, including low frequencies.
Keywords: Current sheath, distribution function, effect of polarization, instability modes, low frequencies, perturbation of electromagnetic field dispersion equation, space plasma, tensor of dielectric permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531898 Multiple Soliton Solutions of (2+1)-dimensional Potential Kadomtsev-Petviashvili Equation
Authors: Mohammad Najafi, Ali Jamshidi
Abstract:
We employ the idea of Hirota-s bilinear method, to obtain some new exact soliton solutions for high nonlinear form of (2+1)-dimensional potential Kadomtsev-Petviashvili equation. Multiple singular soliton solutions were obtained by this method. Moreover, multiple singular soliton solutions were also derived.
Keywords: Hirota bilinear method, potential Kadomtsev-Petviashvili equation, multiple soliton solutions, multiple singular soliton solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13731897 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method
Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi
Abstract:
Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271896 MHD Unsteady Free Convection of Heat and Mass Transfer Flow through Porous Medium with Time Dependent Suction and Constant Heat Source/Sink
Authors: Praveen Saraswat, Rudraman Singh
Abstract:
In this paper, we have investigated the free convection MHD flow due to heat and mass transfer through porous medium bounded by an infinite vertical non-conducting porous plate with time dependent suction under the influence of uniform transverse magnetic field of strength H0. When Temperature (T) and Concentration (C) at the plate is oscillatory with time about a constant non-zero mean. The velocity distribution, the temperature distribution, co-efficient of skin friction and role of heat transfer is investigated. Here the partial differential equations are involved. Exact solution is not possible so approximate solution is obtained and various graphs are plotted.
Keywords: Time Dependent Suction, Convection, MHD, Porous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19081895 Influence of Flash Temperature on Exergetical Performance of Organic Flash Cycle
Authors: Kyoung Hoon Kim, Chul Ho Han
Abstract:
Organic Flash Cycle (OFC) has potential of improving efficiency for recovery of low temperature heat sources mainly due to reducing temperature mismatch in the heat exchanger. In this work exergetical performance analysis of ORC is conducted for recovery of low grade heat source. Effects of system parameters such as flash evaporation temperature or heating temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as exergy efficiency. Results show that exergy efficiency has a peak with respect to the flash temperature, and the optimum flash temperature increases with the heating temperature. The component where the largest exergy destruction occurs varies with the flash temperature or heating temperature.
Keywords: Organic flash cycle (OFC), low grade heat source, exergy, anergy, flash temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091894 On the Approximate Solution of a Nonlinear Singular Integral Equation
Authors: Nizami Mustafa, C. Ardil
Abstract:
In this study, the existence and uniqueness of the solution of a nonlinear singular integral equation that is defined on a region in the complex plane is proven and a method is given for finding the solution.
Keywords: Approximate solution, Fixed-point principle, Nonlinear singular integral equations, Vekua integral operator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19231893 A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation
Authors: Ashvin Gopaul, Jayrani Cheeneebash, Kamleshsing Baurhoo
Abstract:
In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.
Keywords: Chebyshev Pseudospectral collocation method, convection-diffusion equation, restrictive Taylor approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16801892 Study of Heat Transfer of Nanofluids in a Circular Tube
Authors: M. Amoura, M. Alloti, A. Mouassi, N. Zeraibi
Abstract:
Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.
Keywords: Heat transfer, Laminar flow, Nanofluid, Numerical study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30671891 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions
Authors: Chuanyun Gu
Abstract:
By using fixed point theorems for a class of generalized concave and convex operators, the positive solution of nonlinear fractional differential equation with integral boundary conditions is studied, where n ≥ 3 is an integer, μ is a parameter and 0 ≤ μ < α. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it. Finally, two examples are given to illustrate our results.Keywords: Fractional differential equation, positive solution, existence and uniqueness, fixed point theorem, generalized concave and convex operator, integral boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120