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Abstract—A robust AUSM+ upwind discretisation scheme has
been developed to simulate multiphase flow using consistent spatial
discretisation schemes and a modified low-Mach number diffusion
term. The impact of the selection of an interfacial pressure model
has also been investigated. Three representative test cases have been
simulated to evaluate the accuracy of the commonly-used stiffened-
gas equation of state with respect to the IAPWS-IF97 equation
of state for water. The algorithm demonstrates a combination of
robustness and accuracy over a range of flow conditions, with the
stiffened-gas equation tending to overestimate liquid temperature and
density profiles.

Keywords—Multiphase flow, AUSM+ scheme, liquid EOS, low
Mach number models

I. INTRODUCTION

Simulation of multiphase flows is a well-established field
in computational fluid dynamics. Modern commercial solvers
[1] employ a range of methods, such as the mixture model
[2], volume-of-fluid model [3] or the Euler-Euler two-fluid
approach [4]. These solvers are generally pressure-based and
assume incompressibility of the liquid phase. For simulation
of a multiphase flow in a chemical reactor, the incompressible
assumption is unsatisfactory. New density-based algorithms
are typically tested using the stiffened-gas equation of state
or Tait’s equation of state due to their simplicity and ability
to solve phenomena such as severely non-isentropic shocks
[5]. Commercial codes recommend the use of correlations for
determination of liquid properties such as density to avoid
inaccuracies associated with the cubic equations of state such
as Peng-Robinson or Soave-Redlich-Kwong [6].

For discretisation of the convective fluxes, the AUSM+-
upwind scheme has been employed successfully by several
authors to simulate multiphase flow in simple test cases [7]–
[11]. Difficulties associated with hyperbolicity and stiffness
of multiphase models can be remedied by either employing
an interfacial pressure term [12] or using preconditioning
of the mass matrix [13]. The AUSM+-upwind scheme is
known to be excellent at resolving flow discontinuities whilst
remaining cheap and not requiring explicit knowledge of the
system eigenvalues, and is therefore chosen in this study as
the convective flux discretisation scheme [14].

In this paper, we address the trade-off between robustness,
resolution and physically meaningful solutions when utilising
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different equations of state for water. An algorithm based on
the AUSM+ scheme has been formulated which is simple to
use and can be extended to incorporate other equations of state.
The impact of the discretisation method for the differential
source terms is also compared by employing a standard central
scheme and one modifed to use the upwind mechanism.

II. NUMERICAL METHOD

This section will introduce the numerical method employed
in the code PULSAR, by detailing the field equations, spatial
and temporal discretisation methods, source terms, initial and
boundary conditions, equations of state and the primitive
variable reform procedure.

The algorithm which has been employed is based on a
two-fluid model in which the pressure is assumed to be at
equilibrium between the two phases, such that pl = pg where
pi is the pressure of the ith phase and l and g denote the liquid
and gas phases respectively. The set of partial differential
equations solved in this study are the one-dimensional inviscid
two-fluid effective field modelling equations:

∂Wi

∂t
+
∂Fi
∂x

= Sdi + Sndi , (1)

where W is the vector of conservative variables, F is
the convective flux vector and Sd and Snd are the vectors
of differential and non-differential source terms respectively.
These are defined as:

Wi = (αρ, αρu, αρE)
�
i (2)

Fi =
(
αρu, αρu2 + αp, αρuH

)�
i

(3)

Sdi =

(
0, p

∂α

∂x
+ Fnv,−p∂α

∂t
+ uintFnv

)�

i

(4)

Sndi =
(
0, αρg + FD, αρug + uintFD

)�
i
, (5)

where α is the phasic volume fraction, ρ the density, u
the velocity in the x-direction, E the total energy, p the
pressure, H the total enthalpy, Fnv the non-viscous differential
source terms (such as interfacial pressure), uint the interphase
velocity, g the gravitational acceleration and FD the interphase
drag force.

A. Spatial discretisation

The convective fluxes are discretised using the AUSM+-
upwind scheme [14]. For each fluid, firstly we calculate the
interface speed of sound af and the corresponding left and
right Mach number ML/MR states:
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af =
√
aLaR, ML/R =

uL/R

af
. (6)

The left and right Mach number states are used to calculate
the phasic pressure at the interface (αp)f and the Mach
number at the interface, Mf :

(αp)f = P+ (ML) (αp)L + P− (MR) (αp)R (7)

Mf = M+ (ML) +M− (MR) , (8)

where P± and M± are polynomial functions defined as

P± (M) =

{
M±

1 /M if |M | ≥ 1

±M±
2

(
2∓M − 16AMM∓

2

)
else;

(9)

M± (M) =

{
M±

1 if |M | ≥ 1

±M±
2

(
1∓M − 16BM∓

2

)
else;

(10)

M±
1 (M) =

1

2
(M ± |M |) (11)

M±
2 (M) = ±1

4
(M ± 1)

2
, (12)

where A and B are constants, defined in this study as 3/16
and 1/8 respectively. The phasic mass flux at the interface
ṁf is then calculated by an upwinding scheme based on the
direction of the interface Mach number:

ṁf = af

[αLρL
2

(Mf + |Mf |) + αRρR
2

(Mf − |Mf |)
]
(13)

From this, the convective fluxes at the interface can be
calculated and allocated to the left and right nodes:

αρuφ =
ṁf

2
(φL + φR) +

|ṁf |
2

(φL − φR) , (14)

where φ = (1, u,H)
� are the convected variables of mass,

momentum and energy.
The low-Mach number model used in this work is a

modified version of that presented by Liou et al. [10], which
diffuses the interface Mach number and pressure as per

Mf =Mf −Kpmax
(
1− M̄2, 0

) pR − pL
ρ̄ā2

(15)

(αp)f = (αp)f −KuP+(ML)P−(MR)ρ̄ā(uR − uL)(αR − αL)

(16)

where φ̄ denotes an arithmetic-averaged quantity of the left
and right states. Unlike the model of Liou, the speed of sound
used is the arithmetic-averaged phasic speed of sound, not the
mixture speed of sound. We have also added a volume fraction
term in the pressure diffusion. The value of the constants Kp

and Ku varies on a test-case basis between 0 (i.e. no low-Mach
number diffusion) and 0.5.

B. Temporal discretisation

A simple forward-Euler method is used for temporal dis-
cretisation of the system of equations in equation 1 at node
m:

Wt+Δt
m = Wm − Δt

Δx
Rf
m +Δt

(
Rs,d
m +Rs,nd

m

)
, (17)

where t and t + Δt is the current and proceeding time
levels respectively and Rψ

m represents the nodal residual of
a quantity ψ, for example Rf

m is the residual of convective
fluxes resulting from the difference in the inflow and outflow at
the node m. The global minimum time step Δt is determined
from an assumed volume fraction weighted averaged of the
single-phase style convective spectral radius:

Δt = λmin
m

[
αlΔx

|ul,m|+ al,m
+

αgΔx

|ug,m|+ ag,m

]
, (18)

where λ is a CFL-type number. This number is generally
in the range of 0.1 - 0.5 but is generally problem-dependent;
values above 1 are entirely plausible for a test case containing
no large flow gradients.

C. Source terms

1) Differential source terms: The interfacial pressure is an
important differential source term used to render the system of
equations hyperbolic. The interfacial pressure force is defined
as

Fnvi = (pint − p)
∂αi
∂x

. (19)

We have incorporated three different methods for determin-
ing the interfacial pressure pint; the model of Stuhmiller [12]
and two (denoted ‘simple’ and ‘full’) proposed by Liou et
al. in [10] The details of these models can be found in the
appropriate references. The interfacial velocity is required for
the energy differential source term; this is simply defined in
this work as

uint =
1

2
(ug + ul) (20)

The differential source terms require discretisation of the
p ∂α/∂x term. This has been achieved by either employing a
central scheme(

p
∂α

∂x

)t
m

= ptm
(αi)

t
m+1 − (αi)

t
m−1

2Δx
, (21)

or by employing the AUSM+-up scheme as per

(
p
∂α

∂x

)t
m

=
ptm
Δx

[(
(αi)LP+(Mi,L) + (αi)RP−(Mi,R)

)t
m+ 1

2

− (
(αi)LP+(Mi,L) + (αi)RP−(Mi,R)

)t
m− 1

2

]
.

(22)
This allows the differential to be calculated as part of

the standard convective flux solver whilst retaining consistent
discretisation techniques for the convective fluxes and the
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differential source terms. Note that this discretisation is applied
both to the pressure and the interfacial pressure sources, where
pm in the above equation is replaced by the term (pint− p)m.

The time differential of the volume fraction required for the
energy source is discretised as(

p
∂α

∂t

)t
m

= pm
(αi)

t
m − (αi)

t−1
m

Δtt−1
, (23)

where t denotes the current time step and t − 1 denotes
the previous time step. This requires that the time-step and
volume fraction from the previous iteration are stored.

2) Non-differential source terms: The non-differential drag
and gravity source terms are treated very simply:

(αiρig)
t
m = (αi)

t
m(ρi)

t
mg (24)

(αiρiug)
t
m = (αi)

t
m(ρi)

t
m(u)tmg (25)

(FDi )tm = Cfα
t
m

(
1− αtm

)
(ρg)

t
m

(
(ug)

t
m − (ul)

t
m

)
, (26)

where Cf is a (positive) drag coefficient for liquid drag
calculations, and FDl = −FDg .

D. Equations of state

In this work, we employ one of two liquid equations of state
(EOS) to link the thermodynamic quantities of density, speed
of sound and internal energy to the pressure and temperature.
The first is the stiffened-gas model:

ρl =
γl

γl − 1

p+ p0
Cp,lTl

(27)

el =
Cp,lTl
γl

+
p0
ρl

(28)

al =
√

(γl − 1)Cp,lTl, (29)

with constants γl = 2.8, p0 = 8.5×108 Pa and Cp,l = 4186
J/kg K for water.

The second equation of state selected is the IAPWS-IF97
water equation of state, formulated in terms of the Gibbs
free energy [15]. This equation of state serves as a reference
for which to compare the stiffened-gas and correlations due
to its high level of accuracy. For example, the maximum
deviation in specific volume, enthalpy and speed of sound
are ±0.05%, ±0.2 kJ/kg and ±1% respectively. The specific
volume vl, specific internal energy el and speed of sound al
are determined in terms of the derivatives of the Gibbs free
energy g as

vl =

(
∂g

∂p

)
T

(30)

el = g − T

(
∂g

∂T

)
p

− p

(
∂g

∂p

)
T

(31)

al = vl

√
−
(
∂p

∂v

)
S

(32)

where the subscripted S implies the differential is calculated
at constant entropy. The density is then found by taking the

inverse of the specific volume. The list of constants used and
the calculation of the Gibbs free energy can be found in the
original paper [15].

The ideal gas law is employed for the gas phase:

ρg =
p

RgTg
(33)

eg =
RgTg
γg − 1

(34)

ag =
√
γgRgTg, (35)

where Rg is the specific gas constant for air and the
adiabatic index is defined as γg = 1.4.

E. Primitive variable updating

Upon calculating the conservative variables at the next time
step, the velocities, total energies and internal energies can be
immediately determined:

ut+Δt
i =

(αiρiui)
t+Δt

(αiρi)t+Δt
(36)

Et+Δt
i =

(αiρiEi)
t+Δt

(αiρi)t+Δt
(37)

et+Δt
i = Et+Δt

i −
(
ut+Δt
i

)2
2

(38)

The equations of state are used to determine the pressure,
voidage and density by implicit root-finding. A standard secant
method is employed for robustness. The two initial guesses
are defined by the current pressure level in the fluid, and the
function F (p, T ) for which the solution is desired is given by:

F (p, T ) = 0 =

[
1− (αgρg)

t+Δt

ρg

]
ρl − (αlρl)

t+Δt, (39)

where the (αiρi)
t+Δt terms are known values, and the other

variables are updated in the secant loop. For the case of the
stiffened-gas, the liquid density can be written in terms of
ρl = ρl(el, p) by simple substitution:

ρl =
p+ γlp0
(γl − 1)el

, (40)

and thus the stiffened-gas equation gives a closed-loop
for updating pressure, with liquid temperature determined
immediately after finding the root of the function from the
internal energy using the pressure at the proceeding time
step. For the IAPWS-IF97 equations of state, ρl = ρl(Tl, p)
and el = el(Tl, p) cannot be closed explicitly and thus
an inner loop is required to determine the temperature at
each intermediate pressure step from the internal energy. This
is performed with a Newton-Raphson procedure using the
explicitly-defined gas temperature as the initial first guess, and
usually converges within approximately three to five iterations
to a residual of the order 10−8.

Once the pressure, temperatures and densities have been
calculated at the new time step, the speed of sound is updated
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using the appropriate thermodynamic relations and finally the
gas void fraction is given by

αg =
(αgρg)

t+Δt

ρg
, (41)

which closes the liquid volume fraction using αl+αg = 1.

F. Boundary conditions and simulations

Boundary conditions are implemented with the ghost-cell
method. Inlet cells have all values specified except pressure,
which is extrapolated from the next interior cell. Outlet cells
extrapolate all values from the closest interior cell except for
the pressure, which is specified. All simulations are performed
on one of two machines; the first an Intel Xeon E5507
workstation with 12 GB DDR3 RAM running openSUSE
Linux 11.1 and the second an AMD X4 955 Black Edition
desktop with 8 GB DDR3 RAM running openSUSE Linux
11.4.

III. RESULTS AND DISCUSSION

Three unique test cases have been considered in the testing
of the developed algorithm. The first is Ransom’s faucet
problem [16] which models liquid acceleration under the
action of gravity, yielding a sharp discontinuity in the vol-
ume fraction profile. This test is evaluated in a transient
state (at time t = 0.5 s). The vector of primitive variables
P = (αg, vl, vg, p, Tl, Tg)

� is defined in this problem to
be P =

(
0.2, 10.0, 0.0, 105, 298, 298

)�
. Boundary conditions

for the inlet and outlet discussed above are set to the initial
condition values and the length of the domain is 12 m.

The second test is a moving discontinuity problem,
which considers the ability of the algorithm to trans-
mit a shock in volume fraction without disturbing the
other fields. The initial condition for this problem is
given in left- and right-regions which bisect the domain
by PL =

(
0.9, 10.0, 10.0, 105, 300, 300

)�
and PR =(

0.1, 10.0, 10.0, 105, 300, 300
)�

respectively. The inlet ghost
node is located on the left of the domain and the outlet ghost
node is located on the right of the domain, and take their
defined values from the initial conditions. The length of the
domain is 1 m.

The final test is Toumi’s shock-tube problem [17] which
tests the ability of the algorithm to resolve pressure shocks
of the order of magnitude 107 Pa. The initial condi-
tion for this case is given by bisecting the domain, with
PL =

(
0.25, 0.0, 0.0, 2× 107, 308.15, 308.15

)�
and PR =(

0.10, 0.0, 0.0, 1× 107, 308.15, 308.15
)�

the conditions for
the left and right states respectively, which also locate the inlet
and outlet ghost nodes. The length of the domain is 10 m.

A. Ransom’s faucet problem

This problem features the acceleration of a liquid column
under the action of gravity, resulting in a transient state in
which a discontinuity in the volume fractions is present. The
algorithm must therefore be able to resolve a discontinuity

Fig. 1. Grid study for Ransom’s faucet problem - transient gas volume
fraction profile.

whilst maintaining stability in the other fluid fields. Analytical
solutions for the volume fraction and liquid velocity are
available if it is assumed that interphase forces are negligible
and the pressure gradient is neglected and are available in the
literature [8], [16].

Grid resolutions ranging from 160 nodes to 5120 nodes are
tested in in order to show grid convergence and to select an
appropriate grid size for subsequent simulations. For the grid
independence simulations, the drag source term was neglected
and constant values used were λ = 0.5 and σ = 2.0. No low-
Mach number model was used, and the IAPWS-IF97 equation
of state was employed. The results presented in Figure 1
demonstrate the grid convergence for the correlations. With
each subsequent level of grid refinement, the resolution of
the discontinuity increases as expected. The results correspond
well to the analytical solution and oscillations are minimised
due to the dampening effect of the interfacial pressure. On
the basis of the tradeoff between resolution and computational
time, a grid of 1280 nodes was selected for evaluating the EOS
and interfacial pressure models.

Figures 2 and 3 shows the impact of the selected interfacial
pressure model at resolving the gas volume fraction and the
pressure for the correlations. The same constant values and
correlations as per the grid size simulations were employed.
For the volume fraction profile, it is immediately evident that
the interfacial pressure term serves to eliminate the unphysical

Fig. 2. Impact of interfacial pressure on resolution of gas volume fraction
discontinuity - Stuhmiller models with constant values σ = 0 to 5 in Ransom’s
faucet problem.
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Fig. 3. Impact of interfacial pressure on resolution of gas volume fraction
discontinuity - Liou et al. (2008) models and the Stuhmiller model with σ = 2
in Ransom’s faucet problem.

oscillations present in front and behind of the discontinuity.
The simple model of Liou eliminates the post-shock oscillation
but not the oscillation in front of the shock, whilst the full
model, designed to employ interfacial pressure but not over-
dissipate, shows a slightly greater amplitude of oscillation than
the Stuhmiller model of σ = 2. Increasing the value of the
σ constant yields a solution more bound by the analytical
solution, but diffuses the discontinuity. For the pressure profile,
the choice of interfacial pressure model has a large impact.
Selection of no model or the simple model creates a large
departure from from the pressure profiles generated by the
Stuhmiller model or the full Liou model. Over-diffusion with
σ = 5 generates an unphysical pressure drop in the domain.
The departure from the discontinuity is also evident in the
gas velocity profiles, but the departure is not as severe as
in the pressure case. The over-diffused case simply smears
the discontinuity of gas pressure, whilst using no interfacial
pressure model or the simple model generate unphysical oscil-
lations before and after the shock. The Stuhmiller model using
a constant value of σ = 2 is thus a good starting benchmark
for investigating the impact of the interfacial pressure term on
a per-problem basis.

Finally, the impact of the discretisation of the source terms
was investigated by employing either a central scheme or
the AUSM+-up scheme to discretise the differential volume
fraction sources. In this problem, employing a central scheme
with a modest amount of interfacial pressure (σ = 2), a

Fig. 4. Impact of source term discretisation method pressure on resolution
of gas volume fraction discontinuity in Ransom’s faucet problem.

small overshoot is still observed prior to the discontinuity in
the central scheme. As can be seen in Figure 4, employing
the AUSM+-up term for discretisation of both the pressure
and interfacial pressure sources eliminates this oscillation and
facilitates a smooth and sharp resolution of the discontinuity.
It was noted (not shown here) that employing the AUSM+-up
scheme for only the p · ∂α/∂x term - not for the interfacial
pressure term - yields a similar oscillation as the central
scheme but of smaller amplitude prior to the discontinuity
due to the inconsistency in discretisation techniques of the
pressure terms. The consistent discretisation outlined in the
methodology eliminates this oscillation prior to the resolved
discontinuity.

B. Moving discontinuity problem

The moving discontinuity problem tests that the code can
maintain a high resolution of the interface whilst retaining
smooth and undisturbed profiles of the other fields fields,
particularly the pressure field, also known as the so-called
pressure non-disturbing criterion [18]. Grid dependence was
tested by simulating a range of resolutions from 100 to 5000
nodes. These simulations used the Stuhmiller model with
σ = 2, no low-Mach number model and a temporal constant of
λ = 0.3. No gravity or drag sources are used in this problem
and the IAPWS-IF97 equation of state was employed. Figure
5 shows that the AUSM+-up again demonstrates excellent
resolution of the discontinuity even at coarse grids, with
progressively better resolution as the grid is refined. A grid
resolution of 1000 nodes was selected based on the trade-
off between computational expense and accuracy for further
simulations.

Figure 6 compares the solutions for the pressure and liquid
velocity profiles using the central and AUSM+ discretisation
schemes of the void fraction source terms. The pressure
profile shows significant disturbance when the central scheme
is employed, with the non-disturbance criterion fulfilled for
the AUSM+-up scheme. The liquid velocity shows a large
departure from equilibrium at the point of the discontinuity in
the domain for the central scheme, confirming that the central
scheme returns unphysical results for points of discontinuities.
These could potentially be reduced by employing methods
such as artificial viscosity and residual smoothing, but given
that the AUSM+-up scheme is already employed for the

Fig. 5. Grid refinement study for the moving discontinuity test case.
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(a)

(b)

Fig. 6. Impact of the source term discretisation method on the (a) pressure
and (b) liquid velocity profiles for the moving discontinuity problem.

convective fluxes (and thus no extra calculations are required
to determine the differential of volume fraction) it seems
pertinent to select this discretisation scheme.

C. Toumi’s shock tube

This test case was selected due to its widespread use as
a test case for multiphase flow, to test robustness of the
code under more challenging conditions and to evaluate the
accuracy of the stiffened-gas equation of state compared to
the IAPWS-IF97 equation of state. For this test case, grids
ranging from 200 to 10 000 nodes were tested in order to
determine the optimal grid size. In the grid size simulations,
other parameters used were λ = 0.1, σ = 2.0 and the
modified low-Ma model was enabled due to the sharp pressure

Fig. 7. Grid refinement study for Toumi’s shock tube test case.

gradients in the flow. Gravity and drag forces were again
disabled. The grid dependency test in Figure 7 shows a greater
difference between the more highly-resolved grids than the
previous test cases, with the finest grid resolving five distinct
volume fraction surfaces and the coarser grids generating more
smoothed profiles with fewer surfaces. A grid of 3200 nodes
was selected due to its similarity in resolution to the 10 000
node solution.

Figure 8 shows the simulated profiles of gas volume frac-
tion, liquid velocity, liquid temperature and liquid mass flux
for Toumi’s shock tube test problem. The voidage profiles
for both equations of state present excellent agreement, with
slight deviations noted between the first two surfaces. The
liquid velocity profile for the stiffened-gas equation diverges
from the profile predicted by the IAPWS-IF97 equation of
state, with consistent under-prediction of the liquid velocity.
This is due to the inaccurate prediction of density and speed
of sound by the stiffened-gas equation of state impacting
the calculation of mass flux at the cell faces. The liquid
temperature profile is of higher amplitude for the stiffened-
gas than the IAPWS-IF97 equation of state, which predicts
that the range of liquid temperatures in the domain should be
smaller. Whilst the range of temperatures inside the domain
are very different, the overall shape of the profile predicted
by the stiffened-gas equation of state is correct. Use of a
stiffened-gas equation of state is therefore only advisable as
a cheap method to test a code rather than to simulate a
possible solution for a problem. The liquid mass flux profile
for the stiffened-gas profile however matches the IAPWS-
IF97 profile remarkably well, due to the countering effects of
the under-predicted liquid velocity and over-predicted density.
This is supported by considering the water density in the high-
pressure domain by substitution of the appropriate values into
the stiffened-gas density equation, with approximately 5%,
over-prediction of water density compared to the IAPWS-
IF97 equations. The liquid velocities are under-estimated by
approximately the same magnitude of relative error, explaining
the matching liquid mass flux profiles. This phenomenon is
expecially prevalent in this test case given that the difference
between p and p0 is of a lower order of magnitude in a domain
of high pressure than a domain of atmospheric pressure, and
thus the liquid density equation is more amenable to pressure
and temperature changes in the domain.

IV. CONCLUSION

The accuracy of the stiffened-gas equation of state has been
compared to the industrial standard IAPWS-IF97 equation
of state for water by employing a modified AUSM+-up
scheme. The stiffened-gas equation of state was shown to
give inaccurate simulations of the flow profiles in compar-
ison to the IAPWS-IF97 equations of state. The modified
AUSM+-up scheme was found to give excellent resolution
of discontinuities and is robust when coupled to the correct
interfacial pressure and low-Mach number models, particularly
when used to also discretise differential source terms. It
also serves to mitigate against unphysical oscillations around
discontinuities. Future work will add real-fluid equations of
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(a) (b)

(c) (d)

Fig. 8. Profiles of (a) gas volume fraction, (b) liquid velocity, (c) liquid temperature and (d) liquid mass flux for the stiffened-gas and IAPWS-IF97 equations
of state for Toumi’s shock tube test case.

state such as Peng-Robinson in order to simulate arbitrary
liquids, and the one-dimensional algorithm will be extended
to higher dimensions.

ACKNOWLEDGMENT

This work has been funded by the CASTech project (EPSRC
reference EP/G011397/1) and the financial support of the
EPSRC and Johnson Matthey are greatly appreciated.

REFERENCES

[1] FLUENT Documentation for ANSYS 13, ANSYS, Inc.
[2] S. Soo, “On one-dimensional motion of a single component in two-

phases,” International Journal of Multiphase Flow, vol. 3, pp. 79–82,
1976.

[3] C. Hirt and B. Nichols, “Volume of Fluid (VOF) methood for the dy-
namics of free boundaries,” Journal of Computational Physics, vol. 39,
pp. 201–225, 1975.

[4] M. Ishii, Thermofluid dynamic theory of two-phase flow. Paris, France:
Eyrolles, 1975.

[5] K. Shyue, “A fluid-mixture type algorithm for barotropic two-fluid flow
problems,” Journal of Computational Physics, vol. 200, pp. 718–748,
2004.

[6] CFX solver theory guide for ANSYS 13, ANSYS, Inc.
[7] C. Chang and M. Liou, “A new approach to the simulation of com-

pressible multifluid flows with the ausm+ scheme,” in 16th AIAA
Computational Fluid Dynamics conference, Orlando, Florida, USA, June
2003.

[8] H. Paillère, C. Corre, and J. Garcı́a Cascales, “On the extension of
the AUSM+ scheme to compressible two-fluid models,” Computers &
Fluids, vol. 32, pp. 891–916, 2003.

[9] C. Chang and M. Liou, “A robust and accurate approach to computing
compressible multiphase flow: stratified flow model and AUSM+-up
scheme,” Journal of Computational Physics, vol. 225, pp. 840–873,
2007.

[10] M. Liou, C. Chang, L. Nguyen, and T. Theofanous, “A robust and
accurate approach to computing compressible multiphase flow: stratified
flow model and AUSM+-up scheme,” AIAA Journal, vol. 46, pp. 2345–
2356, 2008.

[11] Y. Niu, Y. Lin, and C. Chang, “A further work on multi-phase two-fluid
approach for compressible multi-phase flows,” Numerical Methods in
Fluids, vol. 58, pp. 879–896, 2008.

[12] J. Stuhmiller, “The influence of interfacial pressure forces on the
character of two=phase flow model equations,” International Journal
of Multiphase Flow, vol. 3, pp. 551–560, 1977.

[13] A. Zanotti, C. Méndez, N. Nigro, and M. Storti, “A preconditioning
mass matrix to avoid the ill-poised two-fluid model,” Transactions of
the ASME, vol. 74, pp. 732–739, 2007.

[14] M. Liou, “A sequel to AUSM, part II: AUSM+-up for all speeds,”
Journal of Computational Physics, vol. 214, pp. 137–170, 2005.

[15] W. Wagner, J. Cooper, A. Dittmann, K. Kijima, H. Kretzschmar,
A. Kruse, R. Mares̆, K. Oguchi, H. Sato, I. Stöcker, O. S̆ifner,
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