Uniform Solution on the Effect of Internal Heat Generation on Rayleigh-Benard Convection in Micropolar Fluid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Uniform Solution on the Effect of Internal Heat Generation on Rayleigh-Benard Convection in Micropolar Fluid

Authors: Izzati K. Khalid, Nor Fadzillah M. Mokhtar, Norihan Md. Arifin

Abstract:

The effect of internal heat generation is applied to the Rayleigh-Benard convection in a horizontal micropolar fluid layer. The bounding surfaces of the liquids are considered to be rigid-free, rigid-rigid and free-free with the combination of isothermal on the spin-vanishing boundaries. A linear stability analysis is used and the Galerkin method is employed to find the critical stability parameters numerically. It is shown that the critical Rayleigh number decreases as the value of internal heat generation increase and hence destabilize the system.

Keywords: Internal heat generation, micropolar fluid, rayleighbenard convection.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087912

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436

References:


[1] A. C. Eringen, “Simple microfluids,” Int. J. Engng. Science, vol. 2, 1964, pp. 205–217.
[2] A. C. Eringen, “Micropolar fluids with stretch,” Int. J. Engng. Sci., vol. 7, 1969, pp. 115–127.
[3] A. C. Eringen, “Theory of anistropic micropolar fluids,” Int. J. Engng. Sci., vol. 18, 1980, pp. 5–17.
[4] A. C. Eringen, “Continuum theory of dense rigid suspensions,” Rheol. Acta, vol. 30, 1991, pp. 23–32.
[5] A. C. Eringen, “Theory of micropolar fluids,” J. Math. Mech., vol. 16, 1966b, pp. 1–18.
[6] A. C. Eringen, “Theory of thermomicrofluids,” J. Math. Analyt. Appl., vol. 38, 1972, pp. 480–496.
[7] H. Benard, “Les tourbillions cellulaires dans une nappe liquide,” Revue generale des Sciences pures et appliquees, vol. 11, 1900, pp. 1261– 1271.
[8] H. Benard, “Les tourbillions cellulaires dans une nappe liquid transportant de la chaleur en regime permanent,” Ann. Chem. Phys., vol. 23, 1901, pp. 62–144.
[9] L. Rayleigh, “On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side,” Phil. Mag., vol. 32, 1916, pp. 529–546.
[10] U. Walzer, “Convective instability of a micropolar fluid layer,” Ger. Beitr. Geophysik. Leipzig, vol. 85, 1976, pp. 137-143.
[11] K. V. R. Rao, “Numerical solution of the thermal instability in a micropolar fluid layer between rigid boundaries,” Acta Mech., vol. 32, 1979, pp. 79-88.
[12] V. U. K. Sastry, and V. R. Rao, “Numerical solution of thermal instability of a rotating micropolar fluid layer,” Int. J. Engng. Sci., vol. 21, 1983, pp. 449-461.
[13] Y. Qin, and P. N. Kaloni, “A thermal instability problem in a rotating micropolar fluid,” Int. J. Engng. Sci., vol. 30, 1992, pp. 1117-1126.
[14] G. Ahmadi, and M. Shahinpoor, “Universal stability of magneto micropolar fluid motions,” Int. J. Engng. Sci., vol.12, 1974, pp. 657-663.
[15] Y. N. Murty, and V. V. R. Rao, “Effect of throughflow on Marangoni convection in micropolar fluids,” Acta Mech., vol. 138, 1999, pp. 211- 217.
[16] P. G. Siddeshwar, and S. Pranesh, “Magnetoconvection in fluids with suspended particles under 1 g and μ g ,” Aero. Sci. Tech., vol. 6, 2002, pp. 105-114.
[17] A. Vidal, and A. Acrivos, “Nature of the Neutral State in Surface Tension driven convection,” Phys. Fluids, vol. 9, 1966, pp. 615-616.
[18] W. R. Debler, and L. F. Wolf, “The effect of Gravity and Surface Tension Gradients on cellular convection in fluid layers with parabolic temperature profiles,” J. Heat Transfer, vol. 92, 1970, pp. 351-358.
[19] D. A. Nield, “The onset of transient convective instability,” J. Fluid Mech., vol. 71, 1975, pp. 441-454.
[20] N. Rudraiah, and P. G. Siddeshwar, “Effects of non-uniform temperature gradient on the onset of Marangoni convection in a fluid with suspended particles,” Aerosp. Sci. Technol., vol. 4, 2000, pp. 517-523.
[21] N. Rudraiah, “The onset of transient Marangoni convection in a liquid layer subjected to rotation about a vertical axis,” Mater. Sci. Bull. Indian Acad. Sci., vol. 4, 1982, pp. 297-316.
[22] R. Friedrich, and N. Rudraiah, “Marangoni convection in a rotating fluid layer with non-uniform temperature gradient,” Int. J. Heat Mass Transfer, vol. 27, 1984, pp. 443-449.
[23] G. Lebon, and A. Cloot, “Effects of non-uniform temperature gradients on Benard-Marangoni’s instability,” J. Non-Equilib. Thermodyn., vol. 6, 1981, pp. 37-50.
[24] N. Rudraiah, and V. Ramachandramurthy, “Effects of non-uniform temperature gradient and coriolis force on Benard-Marangoni’s instability,” Acta Mech., vol. 61, 1986, pp. 37-50.
[25] P. G. Siddeshwar, and S. Pranesh, “Effect of non-uniform basic temperature gradient on Rayeligh-Benard convection in a micropolar fluid,” Int. J. Engng. Sci., vol. 36, 1998, pp. 1183-1196.
[26] N. Rudraiah, V. Ramachandramurty, and O. P. Chandna, “Effects of magnetic field and non-uniform temperature gradient on Marangoni convection,” Int. J. Heat Mass Trans., vol. 28, 1985, pp. 1621-1624.
[27] N. Rudraiah, O. P. Chandna, and M. R. Garg, “Effects of non-uniform temperature gradient on magneto-convection driven by surface tension and buoyancy,” Indian J. Tech., vol. 24, 1986, pp. 279-284.
[28] M. J. Fu, N. M. Arifin, M. N. Saad, and R. M. Nazar, “Effects of nonuniform temperature gradient on Marangoni convection in a micropolar fluid,” Euro. J. Sci. R., vol. 70, 2009, pp. 612-620.
[29] R. Idris, H. Othman, and I. Hashim, “On effect of non-uniform basic temperature gradient on Benard-Marangoni convection in micropolar fluid,” Int. Commun. Heat Mass Transfer, vol. 36, 2009, pp. 192-203.
[30] Z. Alloui, and P. Vasseur, “Onset of Benard-Marangoni convection in a micropolar fluid,” Int. J. Heat Mass Trans., vol. 54 2011, pp. 2765-2773.
[31] E. M. Sparrow, R. J. Goldstein, and V. K. Jonsson, “Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile,” J. Fluid Mech., vol. 18, 1964, pp. 513-528.
[32] P. H. Roberts, “Convection in horizontal layers with internal heat generation theory,” J. Fluid Mech., vol. 30, 1967, pp. 33-49.
[33] M. I. Chiang, and K. T. Chiang, “Stability analysis of Benard- Marangoni convection in fluid with internal heat generation,” Phys. D: Appl. Phys., vol. 27, 1994, pp. 748-755.
[34] S. K. Wilson, “The effect of uniform internal heat generation on the onset of steady Marangoni convection in a horizontal layer of fluid,” Acta Mechanica, vol. 124, 1997, pp. 63-78.
[35] N. Bachok, and N. M. Arifin, “Feedback control of the Marangoni- Benard convection in a horizontal fluid layer with internal heat generation,” Microgravity Sci. Technol., vol. 22, 2010, pp. 97-105.