Study of Heat Transfer of Nanofluids in a Circular Tube
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Study of Heat Transfer of Nanofluids in a Circular Tube

Authors: M. Amoura, M. Alloti, A. Mouassi, N. Zeraibi

Abstract:

Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.

Keywords: Heat transfer, Laminar flow, Nanofluid, Numerical study.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088042

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3076

References:


[1] S.U.S Choi, Z.G Zhang, W Yu, F.E Lockwood and E.A Grulke , “Anomalous thermal conductivity enhancement in nano-tube suspensions”, Applied Physics Letters, No. 79 2001, pp 2252–2254.
[2] S.K Das, N Putta, P Thiesen and W Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids”, ASME Trans. J. Heat Transfer, No. 125, 2003, pp 567–574.
[3] S.U.S. Choi, “Developments and Applications of Non-Newtonian Flows”, Fluids Engineering Division FED, No. 231, 1995, pp 99-112.
[4] L. Godson, B. Raja, D. Mohan and S. Wongwises, “Enhancement of heat transfer using nanofluids”, Renew. Sustainable Energy Rev., Vol. 14, No2, 2009, pp 629-641.
[5] Y.Li, J. Zhou, S. Tung, E. Schneider and S. Xi, “A review on development of nanofluid preparation and characterization”, Powder Technol., Vol. 196, No 2, 2009, pp 89-101.
[6] W. Yu, D. M. France, J.L. Routbort and S.U.S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancement”, Heat transf. Eng., Vol. 29, No 5, 2008, pp 432-460.
[7] B.C Pak. and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids”, Int. J. Heat Mass Transf., Vol. 11, 1998, pp 5181- 5201.
[8] D. Wen and Y. Ding , “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions”, Int. J. Heat Mass Transfer, No. 47, 2004, pp 5181–5188.
[9] S. Z. Heris, S. G. Etemad and M. N. Esfahany, “Experimental investigation of oxide nanofluids laminar flow convective heat transfer”, Int. Commun. Heat Mass Transf, Vol. 33, No 4, 2006, pp 529-535.
[10] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu , “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles”, Int. J. Heat Mass Transf., Vol. 50, No 11, 2007, pp 2272-2281.
[11] C.T. Nguyen, G. Roy, C. Gauthier and N. Galaris, Heat transfer enhancement using Al2O3 water nanofluid for an electronic liquid cooling system, App. Therm. Eng., Vol. 27, No 8, 2007, pp 1501-1506.
[12] Y. Ding, H. Alias, D. Wen and R. A. Williams , Heat transfer of aqueous suspensions of Carbon nanotubes, Int. Commun. Heat Mass Transf, Vol. 49, 2006, pp 240-250.
[13] P. Garg, J.L. Alvarado, C. Marsh, T.A. Carlson, D.A. Kessler and K. Annamalai , “An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multiwall carbon nanotubebased aqueeous nanofluids”, Int. J. Heat Mass Transf., Vol 52, No 21, 2009, pp 5090-5101.
[14] Y. Xuan and Q. Li , “Investigation on convective heat transfer and flow features of nanofluids”, Int. J. Heat Mass Transfer, Vol. 125, 2003, pp 151-155.
[15] Y.Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson and G.Wu, “Heat transfer properties of nanoparticle in fluid dispersions”, Int. J. Heat Mass Transfer, Vol. 48, No. 6, 2005, pp 1107-1116.
[16] W.Yu, D. M.France, D. S.Smith, E.V. Timofeeva and J.L. Routbort , “Heat transfer to a Silicon Carbide/water nanofluid” , Int. J. Heat Mass Transfer, Vol. 52, No. 15, 2009, pp 3606-3612.
[17] S.Torii and W. J. Yang, “Heat transfer augmentation of aqueous suspensions of nano-diamonds in turbulent pipe flow”, J. Heat Transf., Vol. 131, 2009, pp 1-5.
[18] S.V. Patankar, “Computation of Conduction and Duct Flow Heat Transfer”, Hemisphere Publishing Corporation, New York 1988.
[19] S.P. Jang and S.U.S. Choi ,” Effects of various parameters on nanofluid thermal conductivity”, ASME J. Heat Transfer, No 129, 2007, pp 617- 623.
[20] E.Abu-Nada, Z. Masoud, H. Oztop and A. Campo , “Effect of nanofluid variable properties on natural convection in enclosures”, Int. J. Thermal Sci., No 49, 2010, pp 479-491.
[21] J. C. Maxwell , “Treatise on Electricity and Magnetism”, Oxford: Clarendon Press 1873.
[22] H.Brinkman, “The viscosity of concentrated suspensions and solutions”, J. Chem. Phys., No. 20, 1952, pp. 571-581.
[23] R.K. Shah, “Thermal entry length solutions for the circular tube and parallel plates”, Proceedings of 3rd National Heat and Mass Transfer Conference, vol. 1, Indian Institute of Technology, Bombay, 1975, p. HMT-11-75.
[24] G. V. Hadjisophocleous, an J. E. S. Venart , “Predicting the transient natural convection in enclosures of arbitrary geometry using a nonorthogonal numerical model”, Numer. Heat Transfer A, No. 13, 1998, pp 373–392.
[25] R.K. Tiwari and M.K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids”, Int. J. Heat Mass Transfer, No. 50, 2007, pp 2002–2018.
[26] C.L. Kuang and A. Violi, “Natural convection heat transfer of nanofluids in a vertical cavity: Effects of non-uniform particle diameter and temperature on thermal conductivity.”, Int. J. Heat and Fluid Flow, No. 31, 2010, pp 236–245.