Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14

Search results for: FDTD

14 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: Semiconductor, wetting, acoustic reflectometry, gigahertz

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
13 Time-Domain Analysis of Pulse Parameters Effects on Crosstalk (In High Speed Circuits)

Authors: L. Tani, N. El Ouzzani

Abstract:

Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in highspeed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information.

Keywords: Statistical Analysis, multiconductor transmission line, crosstalk, printed-circuit board (PCB), Finite difference time domain (FDTD), Rise time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
12 Improved Plasmonic Demultiplexer Based on Tapered and Rectangular Slot MIM Waveguide

Authors: Aso Rahimzadegan, Seyyed Poorya Hosseini, Kamran Qaderi

Abstract:

In this paper, we have proposed two novel plasmonic demultiplexing structures based on metal-insulator-metal surfaces which, beside their compact size, have a very good transmission spectrum. The impact of the key internal parameters on the transmission spectrum is numerically analyzed by using the twodimensional (2D) finite difference time domain (FDTD) method. The proposed structures could be used to develop ultra-compact photonic wavelength demultiplexing devices for large-scale photonic integration.

Keywords: Plasmonics, demultiplexers, Photonic integrated devices, Metalinsulator- metal (MIM) waveguide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
11 Photonic Crystal Waveguide 1x3 Flexible Power Splitter for Optical Network

Authors: Jyothi Digge, B. U. Rindhe, S. K. Narayankhedkar

Abstract:

A compact 1x3 power splitter based on Photonic Crystal Waveguides (PCW) with flexible power splitting ratio is presented in this paper. Multimode interference coupler (MMI) is integrated with PCW. The device size reduction compared with the conventional MMI power splitter is attributed to the large dispersion of the PCW. Band Solve tool is used to calculate the band structure of PCW. Finite Difference Time Domain (FDTD) method is adopted to simulate the relevant structure at 1550nm wavelength. The device is polarization insensitive and allows the control of output (o/p) powers within certain percentage points for both polarizations.

Keywords: Dispersion, MMI Coupler, Photonic Bandgap, Power Splitter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
10 Fluorescent-Core Microcavities Based On Silicon Quantum Dots for Oil Sensing Applications

Authors: V. Zamora, Z. Zhang, A. Meldrum

Abstract:

The compatibility of optical resonators with microfluidic systems may be relevant for chemical and biological applications. Here, a fluorescent-core microcavity (FCM) is investigated as a refractometric sensor for heavy oils. A high-index film of silicon quantum dots (QDs) was formed inside the capillary, supporting cylindrical fluorescence whispering gallery modes (WGMs). A set of standard refractive index oils was injected into a capillary, causing a shift of the WGM resonances toward longer wavelengths. A maximum sensitivity of 240 nm/RIU (refractive index unit) was found for a nominal oil index of 1.74. As well, a sensitivity of 22 nm/RIU was obtained for a lower index of 1.48, more typical of fuel hydrocarbons. Furthermore, the observed spectra and sensitivities were compared to theoretical predictions and reproduced via FDTD simulations, showing in general an excellent agreement. This work demonstrates the potential use of FCMs for oil sensing applications and the more generally for detecting liquid solutions with a high refractive index or high viscosity.

Keywords: Oils, whispering gallery modes, optical resonators, sensing applications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
9 Simulation of Lightning Surge Propagation in Transmission Lines Using the FDTD Method

Authors: Kokiat Aodsup, Thanatchai Kulworawanichpong

Abstract:

This paper describes a finite-difference time-domainFDTD) method to analyze lightning surge propagation in electric transmission lines. Numerical computation of solving the Telegraphist-s equations is determined and investigated its effectiveness. A source of lightning surge wave on power transmission lines is modeled by using Heidler-s surge model. The proposed method was tested against medium-voltage power transmission lines in comparison with the solution obtained by using lattice diagram. As a result, the calculation showed that the method is one of accurate methods to analyze transient lightning wave in power transmission lines.

Keywords: traveling wave, Lightning surge, Bewley lattice diagram, Telegraphist's equations, Finite-difference time-domain (FDTD) method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4885
8 Alternating Implicit Block FDTD Method For Scalar Wave Equation

Authors: N. M. Nusi, M. Othman, M. Suleiman, F. Ismail, N. Alias

Abstract:

In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximum time step size and more accurate than the conventional finite difference time domain (FDTD) method and other existing method of natural ordering.

Keywords: FDTD, Scalar wave equation, alternating direction implicit (ADI), alternating group explicit (AGE), asymmetric approximation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
7 Simulation of the Finite Difference Time Domain in Two Dimension

Authors: Akram G., Jasmy Y.

Abstract:

The finite-difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetic. This paper describes the design of two-dimensional (2D) FDTD simulation software for transverse magnetic (TM) polarization using Berenger's split-field perfectly matched layer (PML) formulation. The software is developed using Matlab programming language. Numerical examples validate the software.

Keywords: Finite difference time domain (FDTD) method, perfectly matched layer (PML), split-filed formulation, transverse magnetic (TM) polarization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5156
6 Modeling and Visualizing Seismic Wave Propagation in Elastic Medium Using Multi-Dimension Wave Digital Filtering Approach

Authors: Jason Chien-Hsun Tseng, Nguyen Dong-Thai Dao, Chong-Ching Chang

Abstract:

A novel PDE solver using the multidimensional wave digital filtering (MDWDF) technique to achieve the solution of a 2D seismic wave system is presented. In essence, the continuous physical system served by a linear Kirchhoff circuit is transformed to an equivalent discrete dynamic system implemented by a MD wave digital filtering (MDWDF) circuit. This amounts to numerically approximating the differential equations used to describe elements of a MD passive electronic circuit by a grid-based difference equations implemented by the so-called state quantities within the passive MDWDF circuit. So the digital model can track the wave field on a dense 3D grid of points. Details about how to transform the continuous system into a desired discrete passive system are addressed. In addition, initial and boundary conditions are properly embedded into the MDWDF circuit in terms of state quantities. Graphic results have clearly demonstrated some physical effects of seismic wave (P-wave and S–wave) propagation including radiation, reflection, and refraction from and across the hard boundaries. Comparison between the MDWDF technique and the finite difference time domain (FDTD) approach is also made in terms of the computational efficiency.

Keywords: Partial Differential Equations, seismic wave propagation, Multi-dimension WaveDigital Filters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
5 Photonic Crystals for Novel Applications in Integrated-Optic Communication Systems and Devices

Authors: Vijay Janyani, Neetu Joshi, Jigyasa Pagaria, Parul Pathak

Abstract:

Photonic Crystal (PhC) based devices are being increasingly used in multifunctional, compact devices in integrated optical communication systems. They provide excellent controllability of light, yet maintaining the small size required for miniaturization. In this paper, the band gap properties of PhCs and their typical applications in optical waveguiding are considered. Novel PhC based applications such as nonlinear switching and tapers are considered and simulation results are shown using the accurate time-domain numerical method based on Finite Difference Time Domain (FDTD) scheme. The suitability of these devices for novel applications is discussed and evaluated.

Keywords: photonic crystals, Band gap engineering, Nonlinear switching, PhC tapers, waveguides

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
4 User-s Hand Effect on TIS of Different GSM900/1800 Mobile Phone Models Using FDTD Method

Authors: Salah I. Al-Mously, Marai M. Abousetta

Abstract:

This paper predicts the effect of the user-s hand-hold position on the Total Isotropic Sensitivity (TIS) of GSM900/1800 mobile phone antennas of realistic in-use conditions, where different semi-realistic mobile phone models, i.e., candy bar and clamshell, as well as different antenna types, i.e., external and internal, are simulated using a FDTD-based platform. A semi-realistic hand model consisting of three tissues and the SAM head are used in simulations. The results show a considerable impact on TIS of the adopted mobile phone models owing to the user-s hand presence at different positions, where a maximum level of TIS is obtained while grasping the upper part of the mobile phone against head. Maximum TIS levels are recorded in talk position for mobile phones with external antenna and maximum differences in TIS levels due to the hand-hold alteration are recorded for clamshell-type phones.

Keywords: mobile phone, FDTD, phantoms, TIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
3 Simulation and Measurement the Radiation of an Antenna inside a Metallic Case using FDTD

Authors: Shabnam Ladan, M. S. Abrishamian

Abstract:

In this paper we have developed a FDTD simulation code which can treat wave propagation of a monopole antenna in a metallic case which covers with PML, and performed a series of three dimensional FDTD simulations of electromagnetic wave propagation in this space .We also provide a measurement set up in antenna lab and fortunately the simulations and measurements show good agreement. According to simulation and measurement results, we confirmed that the computer program which had been written in FORTRAN, works correctly.

Keywords: EMC, monopole antenna, FDTD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
2 A Study of the Hand-Hold Impact on the EM Interaction of a Cellular Handset and a Human

Authors: Salah I. Al-Mously, Marai M. Abousetta

Abstract:

This paper investigates the impact of the hand-hold positions on both antenna performance and the specific absorption rate (SAR) induced in the user-s head. A cellular handset with external antenna operating at GSM-900 frequency is modeled and simulated using a finite difference time-domain (FDTD)-based platform SEMCAD-X. A specific anthropomorphic mannequin (SAM) is adopted to simulate the user-s head, whereas a semirealistic CAD-model of three-tissues is designed to simulate the user-s hand. The results show that in case of the handset in hand close to head at different positions; the antenna total efficiency gets reduced to (14.5% - 5.9%) at cheek-position and to (27.5% to 11.8%) at tilt-position. The peak averaged SAR1g values in head close to handset without hand, are 4.67 W/Kg and 2.66 W/Kg at cheek and tilt-position, respectively. Due to the presence of hand, the SAR1g in head gets reduced to (3.67-3.31 W/Kg) at cheek-position and to (1.84-1.64 W/Kg) at tilt-position, depending on the hand-hold position.

Keywords: specific absorption rate (SAR), phantom, FDTD, cellular handset exposure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
1 Perturbations of the EM-field Meters Reading Caused by Flat Roof Security Wall

Authors: Alfonso Bahillo, Juan Blas, Santiago Mazuelas, Patricia Fernanadez, Ruben Mateo Lorenzo, Evaristo Jose Abril

Abstract:

The wide increase and diffusion on telecommunication technologies have caused a huge spread of electromagnetic sources in most European Countries. Since the public is continuously being exposed to electromagnetic radiation the possible health effects have become the focus of population concerns. As a result, electromagnetic field monitoring stations which control field strength in commercial frequency bands are being placed on the flat roof of many buildings. However there is no guidance on where to place them. This paper presents an analysis of frequency, polarization and angles of incidence of a plane wave which impinges on a flat roof security wall and its dependence on electromagnetic field strength meters placement.

Keywords: EM field exposition, EM field strength meter, FDTD method, flat roof security wall, plane wave propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958