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Abstract—In this study the densitydependenhonlinearreaction-
diffusion equation,which arisesin the insect dispersalmodels, is
solved using the combined application of differential quadrature
method(DQM) and implicit Euler method. The polynomial based
DQM is usedto discretizethe spatialderivativesof the problem.The
resulting time-dependennonlinear systemof ordinary differential
equations(ODE) is solved by using implicit Euler method. The
computationsare carriedout for a Caucty problemdefinedby a one-
dimensionaldensity dependennonlinearreaction-difusion equation
which hasan exact solution. The DQM solutionis foundto bein a
very good agreementith the exact solutionin termsof maximum
absoluteerror The DQM solutionexhibits superioraccurag at large
time levels tending to steady-stateFurthermore,using an implicit
methodin the solution procedurdeadsto stablesolutionsandlarger
time stepscould be used.

Keywords—Density Dependent Nonlinear Reaction-Difusion
Equation, Differential QuadratureMethod, Implicit Euler Method.

|. INTRODUCTION
SOLVING the nonlinearreaction-difusion equation
ou _ Ou

i=t (Dax) i) (=2 )

is a demandingtask among researchersince the equation
arisesin more and more modelling situationsin mary areas,
such as biology, chemistry medicine and ecology For in-
stancejf D is space-dependettienthe modelhasbiomedical
importanceor if D is constantand f(u) = ru(l —u/K) (r is
the linear reproductionrate and K is the carrying capacityof
the environment) the resulting equation(FisherKolmogooff
equation)modelsthe spreadf anadventageougenein apop-
ulation [1]. An extensionto the abosre mentionedcasess the
insectdispersaimodelwhich includesanincreasean diffusion
dueto the populationpressureSucha modelhasgrowth terms
and populationdependedliffusion coeficient D(u) [1], and
theresultingequationis calledthe densitydependenhoninear
reaction-difusion equation.The density-dependentoninear
reaction-difusion equationis rather complicatedbecaus of
the strongernonlinearity and most often only the numerical
solutionsare available.

In [2], Petrov-Galerkin method is used for the solution
of one-dimensionahonlinearreaction-difusion equatiom and
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the cornvergenceof the methodis discussedLater, the com-
bined applicationof DQM with an explicit finite difference
method(FDM) is presentedfor the solution of nonlinear
reaction-difusion equationin one- and two-dimensions[3].

There, since an explicit time integration methodis used,a

relaxation parameteris proposed,in order to overcomethe

stability problems.However, it is obsened thatit is harde to

find the parametemwhenthe problemgetsharder Thenin [4]

both nonlinearreaction-difusion equationand wave equaton

are solved using DQM with three different time integration
schemes(FDM with a relaxation parameter least squares
method(LSM), finite elementmethod (FEM)) and all three
methodsarecomparedn termsof accurag andcomputational
cost. In both [3] and [4] the nonlinearityis evaluatedat the
previous known level, in orderto obtain a linear systemof

equations.

Ontheotherhand,Painlevé analysisis appliedto getseveral
explicit solutionsfor the densitydependenhonlinearreaction-
diffusion equationfor the case D(u) = u by Satsuma[5].
Later in [6] necessanand sufiicient conditionsfor the exis-
tenceof travelling wave solutionsfor the nonlineardegeneate
reaction-difusion equation which is a specialform of dersity
dependentnonlinear reaction-difusion equation, is investi-
gated.Moreover, solution of the Caucly problemdefinedby
the nonlineardegeneratereaction-difusion equationfound to
be approachindl ast — oo for ary boundednitial condition.

In this study thecombinedapplicationof DQM andIimplicit
Euler methodis usedto solve the Caucly problemdefinedby
the density dependenmonlinear reaction-difusion equaion.
The differential quadraturemethod,which wasfirst propose
by Bellman and his associateg7], [8] in the early 19705,
approximatesthe solution of a partial differential equaton
using high order polynomial approximationor using Fourier
seriesexpansion.The spatialderiativesin the densitydepen-
dentnonlinearreaction-difusionequatiorarediscretizd using
polynomialbasedDQM. Oneof the advantageof DQM is that
it is also applicablein the absenceof boundaryconditions
which is not the casefor otherdomaindiscretizationrmethod.
The otheradwantageof the methodis thatthe methodleadsto
accuratenumericalsolutionsusing considerablysmall nunmber
of grid points [9]. For the time discretizationof the system
of ordinary differential equationsobtained after the DQM
discretizationjmplicit Euler methodis applied. ThenNewton
methodis madeuseof to solve the resultingnonlinearsystem
of equationdor therequiredtime level startingfrom theinitial
condition.
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The proposed method is tested on an example problem. The al (1)
numerical solution is seen to be in a very good agreement with Uz (@3) = )1y (@) u(z;), (7)
the exact solution in terms of maximum absolute error with a =
small number of discretization points and the solution show N
superior accuracy at large time levels tending to steaalg st Ugy (T5) = er@) (w5) u(zy), (8)
Since an implicit method is used, the solution does not d&pen j=1
on the time increment and comparing to the previous studigpere ; = 1,..,N, N is the number of grid points in
[3], [4] larger time increments could be used. the whole domain and; (z)’s are the Lagrange interpolated
polynomials. In equations (7) and (8)j") (x;)) (n=1,2)
[I. PROBLEM DEFINITION are the weighting coefficients at the grid points = x;

The one-dimensional density dependent nonlinear reactidh = 1,2, V) to be determined by DQM_ by using a
diffusion equation modelling the insect dispersal, is give Practical notation [9] and are given as follows;
the form [1]

1) (.
(1) MW (z;) L
. 5 8 T, (xl)_ Z#J? Z,j:1,2,...7N,
i= 5 (D52 ) + 0 @ " (2 =) MO (a;) ©
N
I!’l equation (2) the upper dot is usgq for the time _deriva— r§1) () = — Z e (2), (10)
tive, D(u) = Dou™ (Dy, m are positive constants) is the ey J
diffusion coefficient which depends on the populatiorand g
flw) = kuP(1 —u?) (p, ¢ are positive constants) represents @ N
the growth term. After a suitable rescalingtadindz, (2) takes MY (x;) = H (j — k), (11)
the following general form [1] k=1,k#j
W= (umg) T+ ur(1— ) @ e =2 @) (W @) - at) A (g
v * i,j=1,2,...,N,
or
@) ZN: 2
0% ot (Ou)’ ri (@) = — i (@) (13)
U=u ﬁ+mu 1 ((%c) + uP(1 —u?). 4) Py J

Equations of the form (4) are complicated to solve and motstWhe:c1 :Ee 3QM,t'S 3ppl|e% totd|scr$t|ze the Saf"‘t'ald%im_'a'
often only the numerical solutions are available. In théofe! lves of the density dependent ‘nonlinéar reaction- St

ing sections, a numerical procedure using the combination qgiuation, then one has the following nonlinear system of ODE

DQM and implicit Euler method for the solution of the Cauchy

problem defined by (4), i.e., 2

N N
. 2 1 1
U = ul" g rl(j)uj + mu" E rfj)uj +ul (1 —ud)
=1

52 o\ =t
U= uma—xg +mu™! <GZ> + uP (1 — u?) @) @ (14)
h \e) — el y ;= ),1=1,2,...,N.
zeR, t>0, (6 " T (), wi = u(zi), i =12,
w(,0) = uo ) zeR IV. TIME INTEGRATION AND THE SOLUTION PROCEDURE

For the discretization of the time derivative in equatiod)(1

is proposed. In (5)uo(z) is the given initial condition de- implicit Euler method [10] is used, i.e.

pending on the space variahie

N
I[1l. DQM FORMULATION Uintl — Uin _ m (2)
Q Al = Uin+1 Z Tij Wjnt1
Jj=1

For the DQM discretization of the spatial derivatives of
density dependent nonlinear reaction-diffusion equagiogn N
in Section Il polynomial based DQM is used. To this end, +mu’ " Zn%)uj,nﬂ ] (L =uf )
one should assume that-th degree polynomials are used to j=1

2

approximate the first and second order spatial derivatifes o . _ (15)
the solution. Then the DQM approach at a grid paipteads Where'n’ stands for then-th time level andt, = nAt, At
as being the time step. Equation (15) can be reorganized as
N — —
Pin+1 = %(Ul,n-s-l, U2,n+1, --->UN,n+1) =0 (16)
wlz) =Y (wi)uly), ©
=1 with
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V. NUMERICAL RESULTS

Oi(UL i1, U2t 1y ooy UN 1) = Wi — Uit 1 We consider the Cauchy problem defined by the density
dependent nonlinear reaction-diffusion equation moadgilthe
2 insect dispersal including logistic population growth twjt=

+Atu" nHZ“J Uj 1 + mAtu ,H_l ZTU Uj i1 g=m=1[1]ie,

7j=1
u
AR, (11, ). U= 8895 { g ] + u(l —u) x € (—00,00), t >0
17)
In order to solve the nonlinear system of equations (16}, (s, 0) =1 — e/V2, z € (—00,00).
Newton’s method [10] is applied. To this end, the Jacobian (22)
matrix is constructed as With this choice of the reaction terny(u) = u(1 — u)),
the population disperses more rapidly to the regions of towe
[ Op1in Op1n 1 ] density as the population gets more crowded [1].
Qurn  Ougp duN The exact solution to this problem is [1]
Opan 0Pz 02 u(z,t) =1-— e@=e/V2 o= L (23)
Jn _ 8u17n 8UQ771 8’[1]\/7” ) (18) \/5
To measure the quality of the numerical solution maximum
absolute error, for the n-th time level
dpnm  Opnn dpN
i aijl\i;L aiZ;L 8iZ:n ] Tn = 121182{ |uexact (1‘17 tn) —UpQMm (.Z'i, tn)‘ (24)
where is used. In equation (24)czact(zi,tn) and upgnr(zi,tys)

denote the exact and the numerical solutions obtained by the
method proposed in this paper at the grid pain{i=1,2,...,N)
(T)is = —1 4 Atul r “ ) 4 mA 1 ZTS)UM for the n-th time level, respectlyely. o
In order to compute the solution one has to use a finite inter-
val, which is chosen here &s1,1]. In [9], it is indicated that
the use of the nonuniform mesh in the polynomial based DQM
F2mA 1 ZTS)UM L(Ll) gives ris_e to more stable results. In this study to constr_uct
a nonuniform mesh Chebyshev-Gauss-Lobatto (CGL) points
are used to discretize the spatial domain. The CGL points are
2 the points with the propertyTx (x,)| =1, n=1,2,..,N
_ m—2 whereTy (x) is the N-th degree Chebyshev polynomial and
Fm(m = DAtu, Zr” Yim the CGL points are given in [9] as

(n—1)m
—|—Atpuf’ 1 At(p+ q) p+q 1 Xy, = COS (]V_l n = ]., 7]\7 (25)

(Jn)ij = At(r}; ), ™)+ 2mAtul ! ZT” Ujm 1(]1)» for the interval[—l,.l]. . o
In the computations the advantage of using an implicit

i£j, i,j=1,2..N. scheme has been once more observed. Stability problems are
T (19) not encountered due to the use of implicit time integratiep s

Then the solution of the density dependent nonline@nd larger time increments can be used. Especially, for time
reaction-diffusion equation is found at each time step vigvels through steady-state considerably large time steps

solving the linear system of equations be used, e.g. for = 30, At = 3.0 can be taken.
Table | shows the maximum absolute errors for a fixed time

J.Au, = &, (20) (t = 30.0) for various numbers of grid points. The accuracies

by using N = 5,8,11 are almost the same and there is a

for Au,, where drop for N = 15. From the table, DQM is observed to give
very good accuracy with a small number of grid points. For

Au, = Upy; — Uy (21) N = 15, the drop of accuracy is due to the ill-conditioned
Vandermonde-system obtained after the DQM discretization
starting with the initial condition, given in (5). Hereu,, is which is the known nature of DQM for larg¥'.

the vector containing the solution at the discretized jgofat Table Il and Il give the comparison of the DQM solution
then-th time level and® is the NV x 1 vector with components with the exact solution in terms of maximum absolute error
Yin (1=1,2,...,N). given in (24) for small time levels and for the times tending
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TABLE |
MAXIMUM ABSOLUTE ERRORS FOR DIFFERENT NUMBER OF GRID POINTS
t =30.0 N=5 N=38 N =11 N=15
Tn 6.0x 1077 | 4.7x1077 | 1.2x 1075 | 3.1 x 102

to steady-state, respectively. The computations areechaut
with N =5 and it is seen to be enough to obtain the solution
with eleven digits accuracy at steady-state.

TABLE Il
MAXIMUM ABSOLUTE ERRORS FOR SMALL TIME LEVELS

N =5 t =0.01 t=0.1 t=0.5 t=1.0

Tn 1.9x107% | 36x1073 | 53%x1072 | 9.7 x 102

TABLE Il
MAXIMUM ABSOLUTE ERRORS FOR INCREASING TIMES

N =5 t=15.0 t=12.0 = 20.0 t = 50.0

Tn 84x1072 | 25x 1073 | 6.7x 1075 | 2.8 x 10~11

Fig. 1 and Fig. 2 exhibit the behaviour of the solution
for small times and for the times tending to steady-state,
respectively. The steady-state value which is 1 is obtained
aroundt = 16. The agreement between the exact and DQM
solutions in terms of graphics is very well especially abdie
state.

2 —

— : Exact Solution

1.5 * : DQM Solution
l |

i

-1 -08 -06 -04 -02 0 02 04 06 08 10

Fig. 1. Solution at small time levels
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0.991

— : Exact Solution
0.98+ * : DQM Solution

u

0.971

0.961

095 1 1 1 1 1 1 1 1 1 |
-1 -08 -06 -04 -0.2 0 02 04 06 0.8 1

Fig. 2. Solution at steady-state
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