On the Approximate Solution of a Nonlinear Singular Integral Equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
On the Approximate Solution of a Nonlinear Singular Integral Equation

Authors: Nizami Mustafa, C. Ardil

Abstract:

In this study, the existence and uniqueness of the solution of a nonlinear singular integral equation that is defined on a region in the complex plane is proven and a method is given for finding the solution.

Keywords: Approximate solution, Fixed-point principle, Nonlinear singular integral equations, Vekua integral operator

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1328190

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937

References:


[1] E.G. Ladopoulas, "On the numerical evaluation of the general type of finite-part singular integrals and integral equations used in fracture mechanics", J. Engng. Fract. Mech. 31, 1988, pp.315-337.
[2] E.G. Ladopoulas, "On a new integration rule with the Gegenbauer polynomials for singular integral equations used in the theory of elasticity", Ing. Archiv 58, 1988, pp.35-46.
[3] E.G. Ladopoulas, "On the numerical solution of the finite-part singular integral equations of the first and the second kind used in fracture mechanics", Comput. Methods Appl. Mech. Engng. 65, 1987, pp.253- 266.
[4] E.G. Ladopoulas, "On the solution of the finite-part singular integrodifferential equations used in two-dimensional aerodynamics", Arch. Mech. 41, 1989, pp.925-936.
[5] E.G. Ladopoulas, "The general type of finite-part singular integrals and integral equations with logarithmic singularities used in fracture mechanics", Acta Mech. 75, 1988, pp.275-285.
[6] E.G. Ladopoulas, V.A. Zisis, "Nonlinear finite-part singular integral equations arising in two-dimensional fluid mechanics", J. Nonlinear Analysis, 42, 2000, pp.277-290.
[7] E.G. Ladopoulas, "Nonlinear singular integral equations elastodynamics by using Hilbert Transformations", J. Nonlinear Analysis: Real World Applications 6 2005, pp.531-536.
[8] L. Bers and L. Nirenberg , "On a representation for linear elliptic systems with discontinuous coefficients and its applications", Convegno intern sulle equaz. lin. alle deriv. parz; Triest, 1954, pp.111-140.
[9] B.V. Bojarskii, "Quasiconformal mappings and general structural properties of system of nonlinear elliptic in the sense of Lavrentev", Symp. Math.18, 1976, pp.485-499.
[10] E. Lanckau and W. Tutschke, Complex analysis, methods, trends and applications. Pergamon Press, London, 1985.
[11] V.N. Monahov, Boundary value problems with free boundaries for elliptic systems. Nauka, Novosibirsk , 1977.
[12] A.S. Mshim Ba and W. Tutschke, Functional-analytic methods in complex analysis and applications to partial differential equations. World Scientific, Singapore, New Jersey, London, 1990.
[13] W. Tutschke," Lözung nichtlinearer partieller Differentialgleichungssysteme erster Ordnung inder Ebene cluch verwendung einer komplexen Normalform", Mat. Nachr. 75, 1976, pp.283-298.
[14] I.N. Vekua, Generalized analytic functions. Pergamon Press, London, 1962.
[15] A. Zygmund and A.P. Calderon A.P, "On the existence of singular integrals", Acta Mathematica 88, 1952, pp.85- 139.
[16] A.I. Gusseinov and H.S. Muhtarov, Introduction to the theory of nonlinear singular integral equations. Nauka, Moscow, 1980.