Search results for: high carbon steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6859

Search results for: high carbon steel

6559 Enthalpies of Dissociation of Pure Methane and Carbon Dioxide Gas Hydrate

Authors: Qazi Nasir, K. K. Lau, Bhajan Lal

Abstract:

In this study the enthalpies of dissociation for pure methane and pure carbon dioxide was calculated using a hydrate equilibrium data obtained in this study. The enthalpy of dissociation was determined using Clausius-Clapeyron equation. The results were compared with the values reported in literature obtained using various techniques.

Keywords: Enthalpies of dissociation, methane, carbon dioxide, gas hydrate, natural gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943
6558 Challenge of Net-Zero Carbon Construction and Measurement of Energy Consumption and Carbon Emission Reduction to Climate Change, Economy and Job Growths in Hong Kong and Australia

Authors: Kwok Tak Kit

Abstract:

Under the Paris Agreement 2015, the countries committed to address and combat the climate change and its negative impacts and agree to the target of reducing the global greenhouse gas (GHG) emission substantially by limiting the global temperature to 2 0C above the pre-industrial level in this century. An international submit named “26th United Nations Climate Conference” (COP26) was held in Glasgow in 2021 with all committed countries agreed to finalize the outstanding element in Paris Agreement and Glasgow Climate Pact to keep 1.5 0C. In this paper, we will focus on the basic approach of waste strategy, recycling policy, circular economy strategy, net-zero strategy and sustainability strategy and the importance of the elements which affect the carbon emission, waste generation and energy conservation will be further reviewed with recommendation for future study.

Keywords: Net-zero carbon, climate change, carbon emission, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
6557 Wearable Sensing Application- Carbon Dioxide Monitoring for Emergency Personnel Using Wearable Sensors

Authors: Tanja Radu, Cormac Fay, King Tong Lau, Rhys Waite, Dermot Diamond

Abstract:

The development of wearable sensing technologies is a great challenge which is being addressed by the Proetex FP6 project (www.proetex.org). Its main aim is the development of wearable sensors to improve the safety and efficiency of emergency personnel. This will be achieved by continuous, real-time monitoring of vital signs, posture, activity, and external hazards surrounding emergency workers. We report here the development of carbon dioxide (CO2) sensing boot by incorporating commercially available CO2 sensor with a wireless platform into the boot assembly. Carefully selected commercially available sensors have been tested. Some of the key characteristics of the selected sensors are high selectivity and sensitivity, robustness and the power demand. This paper discusses some of the results of CO2 sensor tests and sensor integration with wireless data transmission

Keywords: Proetex, gas sensing, wireless, wearable sensors, carbon dioxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
6556 Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs

Authors: M. B. Limooei, Hadi Ebrahimifar, Sh. Hosseini

Abstract:

Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to make stainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). In this study a layer of cobalt was electroplated on the surface of AISI 441 ferritic stainless steel which is used in solid oxide fuel cells for interconnect applications. The oxidation behavior of coated substrates was studied as a function of time at operating conditions of SOFCs. Cyclic oxidation has been also tested at 800ºC for 100 cycles. Cobalt coating during isothermal oxidation caused to the oxide growth resistance by limiting the outward diffusion of Cr cation and the inward diffusion of oxygen anion. Results of cyclic oxidation exhibited that coated substrates demonstrate an excellent resistance against the spallation and cracking.

Keywords: Oxidation resistance, full cell, Cobalt coating, ferritic stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
6555 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
6554 A Supplier-Manufacturer Relationship Model for Teak Forest Carbon Sequestration and Teak Log Demand Fulfillment with Sustainability Consideration

Authors: Ririn Dewi Cahyani, Muh. Hisjam, Wahyudi Sutopo, Kuncoro Harto Widodo

Abstract:

Availability of raw materials is important for Indonesia as a furniture exporting country. Teak log as raw materials is supplied to the furniture industry by Perum Perhutani (PP). PP needs to involve carbon trading for nature conservation. PP also has an obligation in the Corporate Social Responsibility program. PP and furniture industry also must prosecute the regulations related to ecological issues and labor rights. This study has the objective to create the relationship model between supplier and manufacturer to fulfill teak log demand that involving teak forest carbon sequestration. A model is formulated as Goal Programming to get the favorable solution for teak log procurement and support carbon sequestration that considering economical, ecological, and social aspects of both supplier and manufacturer. The results show that the proposed model can be used to determine the teak log quantity involving carbon trading to achieve the seven goals to be satisfied the sustainability considerations.

Keywords: Availability of teak log, support carbon sequestration, goal programming, sustainability consideration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
6553 Fatigue Strength of S275 Mild Steel under Cyclic Loading

Authors: T. Aldeeb, M. Abduelmula

Abstract:

This study examines the fatigue life of S275 mild steel at room temperature. Mechanical components can fail under cyclic loading during period of time, known as the fatigue phenomenon. In order to prevent fatigue induced failures, material behavior should be investigated to determine the endurance limit of the material for safe design and infinite life, thus leading to reducing the economic cost and loss in human lives. The fatigue behavior of S275 mild steel was studied and investigated. Specimens were prepared in accordance with ASTM E3-11, and fatigue tests of the specimen were conducted in accordance with ASTM E466-07 on a smooth plate, with a continuous radius between ends (hourglass-shaped plate). The method of fatigue testing was applied with constant load amplitude and constant frequency of 4 Hz with load ratio (Fully Reversal R= -1). Surface fractures of specimens were investigated using Scanning Electron Microscope (SEM). The experimental results were compared with the results of a Finite Element Analysis (FEA), using simulation software. The experiment results indicated that the endurance fatigue limit of S275 mild steel was 195.47 MPa.

Keywords: Fatigue life, fatigue strength, finite element analysis, S275 mild steel, scanning electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
6552 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: Aluminum matrix composites, Intermetallics Spark plasma sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
6551 Carbon-Based Composites Enable Monitoring of Internal States in Concrete Structures

Authors: René Čechmánek, Jiří Junek, Bohdan Nešpor, Pavel Šteffan

Abstract:

Regarding previous research studies it was concluded that thin-walled fiber-cement composites are able to conduct electric current under specific conditions. This property is ensured by using of various kinds of carbon materials. Though carbon fibers are less conductive than metal fibers, composites with carbon fibers were evaluated as better current conductors than the composites with metal fibers. The level of electric conductivity is monitored by the means of impedance measurement of designed samples. These composites could be used for a range of applications such as heating of trafficable surfaces or shielding of electro-magnetic fields. The aim of the present research was to design an element with the ability to monitor internal processes in building structures and prevent them from collapsing. As a typical element for laboratory testing there was chosen a concrete column, which was repeatedly subjected to load by simple pressure with continual monitoring of changes in electrical properties.

Keywords: Carbon, conductivity, loading, monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
6550 Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites

Authors: Atilla Evcin, Bahri Ersoy, Süleyman Akpınar, I. Sinan Atlı

Abstract:

Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.

Keywords: Electrospinning, characterization, composites, nanofiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943
6549 Strategies to Achieve Deep Decarbonization in Power Generation: A Review

Authors: Abdullah Alotaiq

Abstract:

The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.

Keywords: Review, power generation, energy transition, decarbonization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72
6548 Adsorption Capacities of Activated Carbons Prepared from Bamboo by KOH Activation

Authors: Samorn Hirunpraditkoon, Nathaporn Tunthong, Anotai Ruangchai, Kamchai Nuithitikul

Abstract:

The production of activated carbon from low or zero cost of agricultural by-products or wastes has received great attention from academics and practitioners due to its economic and environmental benefits. In the production of bamboo furniture, a significant amount of bamboo waste is inevitably generated. Therefore, this research aimed to prepare activated carbons from bamboo furniture waste by chemical (KOH) activation and determine their properties and adsorption capacities for water treatment. The influence of carbonization time on the properties and adsorption capacities of activated carbons was also investigated. The finding showed that the bamboo-derived activated carbons had microporous characteristics. They exhibited high tendency for the reduction of impurities present in effluent water. Their adsorption capacities were comparable to the adsorption capacity of a commercial activated carbon regarding to the reduction in COD, TDS and turbidity of the effluent water.

Keywords: Activated carbon, Bamboo, Water treatment, Chemical activation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5126
6547 Design of Stainless Steel Implant for Fractured Distal Femur

Authors: Abhishek Soni, Bhagat Singh

Abstract:

Perfect restoration of fractured distal femur has been a challenging task for the medical practitioners. In the present study, model of a fractured bone has been created using the scan data of the damaged bone. Thereafter, customized implant of Stainless Steel (SS-316L) for this fractured femur bone is modeled using the reverse engineering approach. Clinical set-up is prepared by assembling all the models together. Stress and deformation analysis of this clinical set-up has been performed in order to check the load bearing capacity and intactness of the joint. From this analysis, it has been inferred that the stresses and deformation developed due to the static load of the person is within the permissible limits.

Keywords: Biomechanical evaluations, customized implant, reverse engineering, stainless steel alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
6546 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm

Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin

Abstract:

In today’s business environment, companies should  make strategic decisions to gain sustainable competitive advantage.  Order selection is a crucial issue among these decisions especially for  steel production industry. When the companies allocate a high  proportion of their design and production capacities to their ongoing  projects, determining which customer order should be chosen among  the potential orders without exceeding the remaining capacity is the  major critical problem. In this study, it is aimed to identify and  prioritize the evaluation factors for the customer order selection  problem. Conjoint Analysis is used to examine the importance level  of each factor which is determined as the potential profit rate per unit  of time, the compatibility of potential order with available capacity,  the level of potential future order with higher profit, customer credit  of future business opportunity, and the negotiability level of  production schedule for the order.

 

Keywords: Conjoint analysis, order prioritization, profit management, structural steel firm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
6545 Preparation of Porous Carbon Particles using a Spray-Drying Method with Colloidal Template

Authors: Yutaka Kisakibaru, AsepBayu Dani Nandiyanto, Ratna Balgis, Takashi Ogi, Kikuo Okuyama

Abstract:

spherical porous carbon particles with controllable porosity with a mean size of 2.5m have been prepared using a spray drying method with organic particle colloidal template. As a precursor, a mixing solution of carbon nanopowder and polystyrene (PS) particles as a template was used. The result showed that the particles with a good porous structure could be obtained. The pore size and shape (spherical) were identical to the initial template, giving a potential way for further developments. The control of particle porosity was also possible and reported in this paper, in which this control could be achieved by means of PS concentration.

Keywords: Porous structure particle; Carbon nanoparticles; Catalyst; Spray-drying method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
6544 Stress Analysis of Spider Gear Using Structural Steel on ANSYS

Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood

Abstract:

Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.

Keywords: Differential, spider gear, ANSYS, structural steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
6543 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation

Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag

Abstract:

Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.

Keywords: Mixed matrix membrane, membrane, CO2/CH4 separation, activated carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
6542 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets

Authors: S. D. El Wakil

Abstract:

The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.

Keywords: Fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
6541 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector

Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan

Abstract:

Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.

Keywords: Embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
6540 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5308
6539 An Investigation on Hybrid Composite Drive Shaft for Automotive Industry

Authors: Gizem Arslan Özgen, Kutay Yücetürk, Metin Tanoğlu, Engin Aktaş

Abstract:

Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA).

Keywords: Composite propeller shaft, hybridization, epoxy matrix, static torque transmission capability, torsional buckling strength, fundamental natural bending frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
6538 Metallographic Analysis of Laser and Mechanically Formed HSLA Steel

Authors: L.C. Kgomari, R.K.K.Mbaya

Abstract:

This research was conducted to develop a correlation between microstructure of HSLA steel and the mechanical properties that occur as a result of both laser and mechanical forming processes of the metal. The technique of forming flat metals by applying laser beams is a relatively new concept in the manufacturing industry. However, the effects of laser energy on the stability of metal alloy phases have not yet been elucidated in terms of phase transformations and microhardness. In this work, CO2 laser source was used to irradiate the surface of a flat metal then the microstructure and microhardness of the metal were studied on the formed specimen. The extent to which the microstructure changed depended on the heat inputs of up to 1000 J/cm2 with cooling rates of about 4.8E+02 K/s. Experimental results revealed that the irradiated surface of a HSLA steel had transformed to austenitic structure during the heating process.

Keywords: Laser, Forming, Microstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
6537 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach

Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh

Abstract:

Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.

Keywords: Activated carbon, adsorption, immobilization, POME based lipase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
6536 Removal of Cationic Heavy Metal and HOC from Soil-Washed Water Using Activated Carbon

Authors: Chi Kyu Ahn, Young Mi Kim, Seung Han Woo, Jong Moon Park

Abstract:

Soil washing process with a surfactant solution is a potential technology for the rapid removal of hydrophobic organic compound (HOC) from soil. However, large amount of washed water would be produced during operation and this should be treated effectively by proper methods. The soil washed water for complex contaminated site with HOC and heavy metals might contain high amount of pollutants such as HOC and heavy metals as well as used surfactant. The heavy metals in the soil washed water have toxic effects on microbial activities thus these should be removed from the washed water before proceeding to a biological waste-water treatment system. Moreover, the used surfactant solutions are necessary to be recovered for reducing the soil washing operation cost. In order to simultaneously remove the heavy metals and HOC from soil-washed water, activated carbon (AC) was used in the present study. In an anionic-nonionic surfactant mixed solution, the Cd(II) and phenanthrene (PHE) were effectively removed by adsorption on activated carbon. The removal efficiency for Cd(II) was increased from 0.027 mmol-Cd/g-AC to 0.142 mmol-Cd/g-AC as the mole ratio of SDS increased in the presence of PHE. The adsorptive capacity of PHE was also increased according to the SDS mole ratio due to the decrement of molar solubilization ratios (MSR) for PHE in an anionic-nonionic surfactant mixture. The simultaneous adsorption of HOC and cationic heavy metals using activated carbon could be a useful method for surfactant recovery and the reduction of heavy metal toxicity in a surfactant-enhanced soil washing process.

Keywords: Activated carbon, Anionic-nonionic surfactant mixture, Cationic heavy metal, HOC, Soil washing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
6535 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236
6534 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC

Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish

Abstract:

Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.

Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
6533 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel

Authors: Joseph C. Chen, Joshua Cox

Abstract:

This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.

Keywords: Taguchi parameter design, surface roughness, dimensional accuracy, Wire EDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
6532 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes

Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin

Abstract:

Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.

Keywords: Agro-industrial waste, biomass, briquettes, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
6531 Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma

Authors: M. Vesali Naseh, A. A. Khodadadi, Y. Mortazavi, O. Alizadeh Sahraei, F. Pourfayaz, S. Mosadegh Sedghi

Abstract:

In this study, multiwall carbon nanotubes (MWNTs) were modified with nitric acid chemically and by dielectric barrier discharge (DBD) plasma in an oxygen-based atmosphere. Used carbon nanotubes (CNTs) were prepared by chemical vapour deposition (CVD) floating catalyst method. For removing amorphous carbon and metal catalyst, MWNTs were exposed to dry air and washed with hydrochloric acid. Heating purified CNTs under helium atmosphere caused elimination of acidic functional groups. Fourier transformed infrared spectroscopy (FTIR) shows formation of oxygen containing groups such as C=O and COOH. Brunauer, Emmett, Teller (BET) analysis revealed that functionalization causes generation of defects on the sidewalls and opening of the ends of CNTs. Results of temperature-programmed desorption (TPD) and gas chromatography(GC) indicate that nitric acid treatment create more acidic groups than plasma treatment.

Keywords: Carbon nanotubes (CNTs), chemical treatment, functionalization, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5771
6530 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber

Authors: Mohamed H. Gabr, Kiyoshi Uzawa

Abstract:

The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.

Keywords: Sub-micro-filler, nano-composites, interfacial shear strength, polyamide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370