Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs
Authors: M. B. Limooei, Hadi Ebrahimifar, Sh. Hosseini
Abstract:
Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to make stainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). In this study a layer of cobalt was electroplated on the surface of AISI 441 ferritic stainless steel which is used in solid oxide fuel cells for interconnect applications. The oxidation behavior of coated substrates was studied as a function of time at operating conditions of SOFCs. Cyclic oxidation has been also tested at 800ºC for 100 cycles. Cobalt coating during isothermal oxidation caused to the oxide growth resistance by limiting the outward diffusion of Cr cation and the inward diffusion of oxygen anion. Results of cyclic oxidation exhibited that coated substrates demonstrate an excellent resistance against the spallation and cracking.
Keywords: Oxidation resistance, full cell, Cobalt coating, ferritic stainless steel.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087408
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036References:
[1] W. Z. Zhu and S. C. Deevi, 2003, Materials Science and Engineering A,
348, pp. 227.
[2] W. J. Quadakkers, J. P. Abellan, V. Shemet and L. Singheiser., 2003,
Materials at High Temperatures, 20, pp. 115.
[3] X. Chen, P. Y. Hou, C. P. Jacobson, S.J. Visko and L.C. De Jonghe.,
2005, Solid State Ionics., 176, pp. 425.
[4] H. Kurokawa, C. P. Jacobson, L. C. DeJonghe and S. J. Visco, 2007,
Solid State Ionics, 178, pp. 287.
[5] X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visko and L. C. De Jonghe.,
2005, Solid State Ionics. 176, pp. 425.
[6] Z. Yang, G. Xia, S. P. Simner and J.W. Stevenson., 2005, Journal of the
Electrochemical Society, 152, pp. 1896.
[7] Z. Yang, G. Xia, X. Li and J.W. Stevenson., 2007, International Journal
of Hydrogen Energy, 32, pp. 3648.
[8] Z. Yang, G. Xia and J. W. Stevenson., 2005, Electrochemical and Solid-
State Letters., 8, pp. A168.
[9] W. Wei, W. Chen and D.G. Ivey., 2007, Chemistry of Materials, 19, pp.
2816.
[10] M.R. Bateni, P. Wei, X. Deng and A. Petric., 2007, Surface & Coating
Technology., 201, pp. 4677.
[11] P. Wei, X. Deng, M.R. Bateni and A. Petric., 2007, Corrosion 63, pp.
529.
[12] X. Deng, P. Wei, M.R. Bateni and A. Petric., 2006, Journal of Power
Sources 160, pp. 1225.
[13] Y.S. Chou, J.W. Stevenson and P. Singh., 2008, Journal of Power
Sources, 185, pp. 1001.
[14] W.J Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, 2003,
Materials at High Temperatures, 20, pp. 115.
[15] N. Shaigan, D.G. Ivey and W. Chen., 2008, J. power sources, 185, pp.
331.
[16] L. Cooper, S. Benhaddad, A. Wood and D.G. Ivey., 2008, J. power
sources, 184, pp. 220.
[17] M.G.C. Cox, B. Mcenaney and V.D. Scott, 1972, Phil Mag., 26, pp.
839.
[18] H. Kurokawa, K. Kawamura and T. Maruyama, 2004, Solid State
Ionics, 168, pp. 13.
[19] Z.G. Yang, 2008, International Materials Reviews, 53, pp. 39.
[20] E. N’Dah, S. Tsipas, M.P. Hierro and F.J. Pérez, 2007, Corrosion
Science, 49, pp. 3850.
[21] S. Molin, B. Kusz, M. Gazda and P. Jasinski, 2008, J. power sources,
181, pp. 31.
[22] A. Petric and H. Ling, 2007, J. Am. Ceram. Soc. 90, pp. 1515.