Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs

Authors: M. B. Limooei, Hadi Ebrahimifar, Sh. Hosseini

Abstract:

Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to make stainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). In this study a layer of cobalt was electroplated on the surface of AISI 441 ferritic stainless steel which is used in solid oxide fuel cells for interconnect applications. The oxidation behavior of coated substrates was studied as a function of time at operating conditions of SOFCs. Cyclic oxidation has been also tested at 800ºC for 100 cycles. Cobalt coating during isothermal oxidation caused to the oxide growth resistance by limiting the outward diffusion of Cr cation and the inward diffusion of oxygen anion. Results of cyclic oxidation exhibited that coated substrates demonstrate an excellent resistance against the spallation and cracking.

Keywords: Oxidation resistance, full cell, Cobalt coating, ferritic stainless steel.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087408

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031

References:


[1] W. Z. Zhu and S. C. Deevi, 2003, Materials Science and Engineering A, 348, pp. 227.
[2] W. J. Quadakkers, J. P. Abellan, V. Shemet and L. Singheiser., 2003, Materials at High Temperatures, 20, pp. 115.
[3] X. Chen, P. Y. Hou, C. P. Jacobson, S.J. Visko and L.C. De Jonghe., 2005, Solid State Ionics., 176, pp. 425.
[4] H. Kurokawa, C. P. Jacobson, L. C. DeJonghe and S. J. Visco, 2007, Solid State Ionics, 178, pp. 287.
[5] X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visko and L. C. De Jonghe., 2005, Solid State Ionics. 176, pp. 425.
[6] Z. Yang, G. Xia, S. P. Simner and J.W. Stevenson., 2005, Journal of the Electrochemical Society, 152, pp. 1896.
[7] Z. Yang, G. Xia, X. Li and J.W. Stevenson., 2007, International Journal of Hydrogen Energy, 32, pp. 3648.
[8] Z. Yang, G. Xia and J. W. Stevenson., 2005, Electrochemical and Solid- State Letters., 8, pp. A168.
[9] W. Wei, W. Chen and D.G. Ivey., 2007, Chemistry of Materials, 19, pp. 2816.
[10] M.R. Bateni, P. Wei, X. Deng and A. Petric., 2007, Surface & Coating Technology., 201, pp. 4677.
[11] P. Wei, X. Deng, M.R. Bateni and A. Petric., 2007, Corrosion 63, pp. 529.
[12] X. Deng, P. Wei, M.R. Bateni and A. Petric., 2006, Journal of Power Sources 160, pp. 1225.
[13] Y.S. Chou, J.W. Stevenson and P. Singh., 2008, Journal of Power Sources, 185, pp. 1001.
[14] W.J Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, 2003, Materials at High Temperatures, 20, pp. 115.
[15] N. Shaigan, D.G. Ivey and W. Chen., 2008, J. power sources, 185, pp. 331.
[16] L. Cooper, S. Benhaddad, A. Wood and D.G. Ivey., 2008, J. power sources, 184, pp. 220.
[17] M.G.C. Cox, B. Mcenaney and V.D. Scott, 1972, Phil Mag., 26, pp. 839.
[18] H. Kurokawa, K. Kawamura and T. Maruyama, 2004, Solid State Ionics, 168, pp. 13.
[19] Z.G. Yang, 2008, International Materials Reviews, 53, pp. 39.
[20] E. N’Dah, S. Tsipas, M.P. Hierro and F.J. Pérez, 2007, Corrosion Science, 49, pp. 3850.
[21] S. Molin, B. Kusz, M. Gazda and P. Jasinski, 2008, J. power sources, 181, pp. 31.
[22] A. Petric and H. Ling, 2007, J. Am. Ceram. Soc. 90, pp. 1515.