Strategies to Achieve Deep Decarbonization in Power Generation: A Review
Authors: Abdullah Alotaiq
Abstract:
The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.
Keywords: Review, power generation, energy transition, decarbonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84References:
[1] ‘Paris Agreement’, Int’l Legal Materials, vol. 55, p. 743, 2016.
[2] J. D. Jenkins, M. Luke, and S. Thernstrom, ‘Getting to Zero Carbon Emissions in the Electric Power Sector’, Joule, vol. 2, no. 12, pp. 2498–2510, Dec. 2018, doi: 10.1016/j.joule.2018.11.013.
[3] M. Z. Jacobson et al., ‘100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World’, Joule, vol. 1, no. 1, pp. 108–121, Sep. 2017, doi: 10.1016/j.joule.2017.07.005.
[4] F. Gaffney, J. P. Deane, G. Drayton, J. Glynn, and B. P. Ó Gallachóir, ‘A Comparative Analysis of Deep Decarbonisation Scenarios for the European Power System’. Rochester, NY, Sep. 26, 2018. doi: 10.2139/ssrn.3255566.
[5] M. Barasa, D. Bogdanov, A. S. Oyewo, and C. Breyer, ‘A cost optimal resolution for Sub- Saharan Africa powered by 100% renewables in 2030’, Renewable and Sustainable Energy Reviews, vol. 92, pp. 440–457, Sep. 2018, doi: 10.1016/j.rser.2018.04.110.
[6] C. F. Heuberger, I. Staffell, N. Shah, and N. M. Dowell, ‘A systems approach to quantifying the value of power generation and energy storage technologies in future electricity networks’, Computers C Chemical Engineering, vol. 107, pp. 247–256, Dec. 2017, doi: 10.1016/j.compchemeng.2017.05.012.
[7] A. Aghahosseini, D. Bogdanov, and C. Breyer, ‘A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions’, Energies, vol. 10, no. 8, Art. no. 8, Aug. 2017, doi: 10.3390/en10081171.
[8] B. Kroposki et al., ‘Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy’, IEEE Power and Energy Magazine, vol. 15, no. 2, pp. 61–73, Mar. 2017, doi: 10.1109/MPE.2016.2637122.
[9] A. Gupta, M. Davis, and A. Kumar, ‘An integrated assessment framework for the decarbonization of the electricity generation sector’, Applied Energy, vol. 288, p. 116634, Apr. 2021, doi: 10.1016/j.apenergy.2021.116634.
[10] M. Davis, A. Moronkeji, M. Ahiduzzaman, and A. Kumar, ‘Assessment of renewable energy transition pathways for a fossil fuel-dependent electricity-producing jurisdiction’, Energy for Sustainable Development, vol. 59, pp. 243–261, Dec. 2020, doi: 10.1016/j.esd.2020.10.011.
[11] Z. A. Wendling, ‘Bridges beyond renewable energy: Decarbonizing the global electricity sector under uncertainty’, Energy Research C Social Science, vol. 48, pp. 235–245, Feb. 2019, doi: 10.1016/j.erss.2018.09.020.
[12] D. P. Schlachtberger, T. Brown, M. Schäfer, S. Schramm, and M. Greiner, ‘Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints’, Energy, vol. 163, pp. 100–114, Nov. 2018, doi: 10.1016/j.energy.2018.08.070.
[13] B. van Zuijlen, W. Zappa, W. Turkenburg, G. van der Schrier, and M. van den Broek, ‘Cost-optimal reliable power generation in a deep decarbonisation future’, Applied Energy, vol. 253, p. 113587, Nov. 2019, doi: 10.1016/j.apenergy.2019.113587.
[14] B. Hrnčić, A. Pfeifer, F. Jurić, N. Duić, V. Ivanović, and I. Vušanović, ‘Different investment dynamics in energy transition towards a 100% renewable energy system’, Energy, vol. 237, p. 121526, Dec. 2021, doi: 10.1016/j.energy.2021.121526.
[15] R. Way, M. C. Ives, P. Mealy, and J. D. Farmer, ‘Empirically grounded technology forecasts and the energy transition’, Joule, vol. 6, no. 9, pp. 2057–2082, Sep. 2022, doi: 10.1016/j.joule.2022.08.009.
[16] C. Gerbaulet, C. von Hirschhausen, C. Kemfert, C. Lorenz, and P.-Y. Oei, ‘European electricity sector decarbonization under different levels of foresight’, Renewable Energy, vol. 141, pp. 973–987, Oct. 2019, doi: 10.1016/j.renene.2019.02.099.
[17] C. T. M. Clack et al., ‘Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar’, Proceedings of the National Academy of Sciences, vol. 114, no. 26, pp. 6722–6727, Jun. 2017, doi: 10.1073/pnas.1610381114.
[18] M. Child, C. Kemfert, D. Bogdanov, and C. Breyer, ‘Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe’, Renewable Energy, vol. 139, pp. 80–101, Aug. 2019, doi: 10.1016/j.renene.2019.02.077.
[19] G. Pleßmann and P. Blechinger, ‘How to meet EU GHG emission reduction targets? A model based decarbonization pathway for Europe’s electricity supply system until 2050’, Energy Strategy Reviews, vol. 15, pp. 19–32, Mar. 2017, doi: 10.1016/j.esr.2016.11.003.
[20] W. Zappa, M. Junginger, and M. van den Broek, ‘Is a 100% renewable European power system feasible by 2050?’, Applied Energy, vol. 233–234, pp. 1027–1050, Jan. 2019, doi: 10.1016/j.apenergy.2018.08.109.
[21] D. Bogdanov et al., ‘Low-cost renewable electricity as the key driver of the global energy transition towards sustainability’, Energy, vol. 227, p. 120467, Jul. 2021, doi: 10.1016/j.energy.2021.120467.
[22] M. Lehtveer and M. Fridahl, ‘Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences’, Energy, vol. 213, p. 118786, Dec. 2020, doi: 10.1016/j.energy.2020.118786.
[23] J. Bistline, G. Blanford, T. Mai, and J. Merrick, ‘Modeling variable renewable energy and storage in the power sector’, Energy Policy, vol. 156, p. 112424, Sep. 2021, doi: 10.1016/j.enpol.2021.112424.
[24] K. Poncelet, E. Delarue, D. Six, and W. D’haeseleer, ‘Myopic optimization models for simulation of investment decisions in the electric power sector’, in 2016 13th International Conference on the European Energy Market (EEM), Jun. 2016, pp. 1–9. doi: 10.1109/EEM.2016.7521261.
[25] D. Bogdanov and C. Breyer, ‘North-East Asian Super Grid for 100% renewable energy supply: Optimal mix of energy technologies for electricity, gas and heat supply options’, Energy Conversion and Management, vol. 112, pp. 176–190, Mar. 2016, doi: 10.1016/j.enconman.2016.01.019.
[26] G. Pleßmann and P. Blechinger, ‘Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets’, Energy, vol. 137, pp. 1041–1053, Oct. 2017, doi: 10.1016/j.energy.2017.03.076.
[27] C. F. Heuberger, E. S. Rubin, I. Staffell, N. Shah, and N. Mac Dowell, ‘Power capacity expansion planning considering endogenous technology cost learning’, Applied Energy, vol. 204, pp. 831–845, Oct. 2017, doi: 10.1016/j.apenergy.2017.07.075.
[28] A. Mileva, J. Johnston, J. H. Nelson, and D. M. Kammen, ‘Power system balancing for deep decarbonization of the electricity sector’, Applied Energy, vol. 162, pp. 1001–1009, Jan. 2016, doi: 10.1016/j.apenergy.2015.10.180.
[29] L. Duan, R. Petroski, L. Wood, and K. Caldeira, ‘Stylized least-cost analysis of flexible nuclear power in deeply decarbonized electricity systems considering wind and solar resources worldwide’, Nat Energy, vol. 7, no. 3, Art. no. 3, Mar. 2022, doi: 10.1038/s41560-022-00979- x.
[30] S. Ziyaei, M. Panahi, D. Manzour, A. Karbasi, and H. Ghaffarzadeh, ‘Sustainable power generation through decarbonization in the power generation industry’, Environ Monit Assess, vol. 195, no. 1, p. 225, Dec. 2022, doi: 10.1007/s10661-022-10794-2.
[31] L. Hirth and J. C. Steckel, ‘The role of capital costs in decarbonizing the electricity sector’, Environ. Res. Lett., vol. 11, no. 11, p. 114010, Nov. 2016, doi: 10.1088/1748- 9326/11/11/114010.
[32] N. A. Sepulveda, J. D. Jenkins, F. J. de Sisternes, and R. K. Lester, ‘The Role of Firm Low- Carbon Electricity Resources in Deep Decarbonization of Power Generation’, Joule, vol. 2, no. 11, pp. 2403–2420, Nov. 2018, doi: 10.1016/j.joule.2018.08.006.
[33] H. Farzaneh, B. McLellan, and K. N. Ishihara, ‘Toward a CO2 zero emissions energy system in the Middle East region’, International Journal of Green Energy, vol. 13, no. 7, pp. 682–694, May 2016, doi: 10.1080/15435075.2014.889014.
[34] A. Aghahosseini, D. Bogdanov, and C. Breyer, ‘Towards sustainable development in the MENA region: Analysing the feasibility of a 100% renewable electricity system in 2030’, Energy Strategy Reviews, vol. 28, p. 100466, Mar. 2020, doi: 10.1016/j.esr.2020.100466.
[35] J. E. T. Bistline and G. J. Blanford, ‘The role of the power sector in net-zero energy systems’, Energy and Climate Change, vol. 2, p. 100045, Dec. 2021, doi: 10.1016/j.egycc.2021.100045.
[36] B. Pickering, F. Lombardi, and S. Pfenninger, ‘Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system’, Joule, vol. 6, no. 6, pp. 1253–1276, Jun. 2022, doi: 10.1016/j.joule.2022.05.009.
[37] C. Pickering and J. Byrne, ‘The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers’, Higher Education Research C Development, vol. 33, no. 3, pp. 534–548, May 2014, doi: 10.1080/07294360.2013.841651.
[38] J.-N. Kang, Y.-M. Wei, L.-C. Liu, R. Han, B.-Y. Yu, and J.-W. Wang, ‘Energy systems for climate change mitigation: A systematic review’, Applied Energy, vol. 263, p. 114602, Apr. 2020, doi: 10.1016/j.apenergy.2020.114602.
[39] A. Mosavi, M. Salimi, S. Faizollahzadeh Ardabili, T. Rabczuk, S. Shamshirband, and A. R. Varkonyi-Koczy, ‘State of the Art of Machine Learning Models in Energy Systems, a Systematic Review’, Energies, vol. 12, no. 7, Art. no. 7, Jan. 2019, doi: 10.3390/en12071301.
[40] F. Robertson Munro and P. Cairney, ‘A systematic review of energy systems: The role of policymaking in sustainable transitions’, Renewable and Sustainable Energy Reviews, vol. 119, p. 109598, Mar. 2020, doi: 10.1016/j.rser.2019.109598.
[41] A. Qazi et al., ‘Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions’, IEEE Access, vol. 7, pp. 63837–63851, 2019, doi: 10.1109/ACCESS.2019.2906402.
[42] K. Knobloch, U. Yoon, and P. M. Vogt, ‘Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias’, Journal of Cranio-Maxillofacial Surgery, vol. 39, no. 2, pp. 91–92, Mar. 2011, doi: 10.1016/j.jcms.2010.11.001.
[43] J. Meng, R. Way, E. Verdolini, and L. Diaz Anadon, ‘Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition’, Proceedings of the National Academy of Sciences, vol. 118, no. 27, p. e1917165118, Jul. 2021, doi: 10.1073/pnas.1917165118.
[44] M. Victoria, E. Zeyen, and T. Brown, ‘Speed of technological transformations required in Europe to achieve different climate goals’, Joule, vol. 6, no. 5, pp. 1066–1086, May 2022, doi: 10.1016/j.joule.2022.04.016.
[45] C. F. Heuberger, E. S. Rubin, I. Staffell, N. Shah, and N. Mac Dowell, ‘Power capacity expansion planning considering endogenous technology cost learning’, Applied Energy, vol. 204, pp. 831–845, Oct. 2017, doi: 10.1016/j.apenergy.2017.07.075.
[46] S. Koohi-Fayegh and M. A. Rosen, ‘A review of energy storage types, applications and recent developments’, Journal of Energy Storage, vol. 27, p. 101047, Feb. 2020, doi: 10.1016/j.est.2019.101047.
[47] N. Wang, K. Akimoto, and G. F. Nemet, ‘What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects’, Energy Policy, vol. 158, p. 112546, Nov. 2021, doi: 10.1016/j.enpol.2021.112546.
[48] A. Thakur, C. E. Canter, and A. Kumar, ‘Life-cycle energy and emission analysis of power generation from forest biomass’, Applied Energy, vol. 128, pp. 246–253, Sep. 2014, doi: 10.1016/j.apenergy.2014.04.085.
[49] A. Botelho, P. Ferreira, F. Lima, L. M. C. Pinto, and S. Sousa, ‘Assessment of the environmental impacts associated with hydropower’, Renewable and Sustainable Energy Reviews, vol. 70, pp. 896–904, Apr. 2017, doi: 10.1016/j.rser.2016.11.271.
[50] P. Olasolo, M. C. Juárez, M. P. Morales, S. D´Amico, and I. A. Liarte, ‘Enhanced geothermal systems (EGS): A review’, Renewable and Sustainable Energy Reviews, vol. 56, pp. 133–144, Apr. 2016, doi: 10.1016/j.rser.2015.11.031.
[51] G. Le Treut, J. Lefèvre, F. Lallana, and G. Bravo, ‘The multi-level economic impacts of deep decarbonization strategies for the energy system’, Energy Policy, vol. 156, p. 112423, Sep. 2021, doi: 10.1016/j.enpol.2021.112423.