
 

 

 
Abstract—The integration of Artificial Intelligence (AI) 

techniques in the optimization of steel moment frame structures 
represents a transformative approach to enhance the design, analysis, 
and performance of these critical engineering systems. The review 
encompasses a wide spectrum of AI methods, including machine 
learning algorithms, evolutionary algorithms, neural networks, and 
optimization techniques, applied to address various challenges in the 
field. The synthesis of research findings highlights the 
interdisciplinary nature of AI applications in structural engineering, 
emphasizing the synergy between domain expertise and advanced 
computational methodologies. This synthesis aims to serve as a 
valuable resource for researchers, practitioners, and policymakers 
seeking a comprehensive understanding of the state-of-the-art in AI-
driven optimization for steel moment frame structures. The paper 
commences with an overview of the fundamental principles governing 
steel moment frame structures and identifies the key optimization 
objectives, such as efficiency of structures. Subsequently, it delves into 
the application of AI in the conceptual design phase, where algorithms 
aid in generating innovative structural configurations and optimizing 
material utilization. The review also explores the use of AI for real-
time structural health monitoring and predictive maintenance, 
contributing to the long-term sustainability and reliability of steel 
moment frame structures. Furthermore, the paper investigates how AI-
driven algorithms facilitate the calibration of structural models, 
enabling accurate prediction of dynamic responses and seismic 
performance. Thus, by reviewing and analyzing the recent 
achievements in applications artificial intelligent in optimization of 
steel moment frame structures, the process of designing, analysis, and 
performance of the structures can be analyzed and modified. 
 

Keywords—Artificial Intelligent, optimization process, steel 
moment frame, structural engineering.  

I. INTRODUCTION 

HE integration of AI in the optimization of steel moment 
frame structures marks a paradigm shift in structural 

engineering, promising enhanced efficiency and performance. 
AI can play a significant role in the optimization of steel 
moment frame structures, offering advanced methods for 
design, analysis, and decision-making [1]. Recent years have 
witnessed a surge in the utilization of AI techniques for 
optimizing steel moment frame structures. Machine learning 
algorithms, particularly genetic algorithms, neural networks, 
and swarm intelligence, have proven to be powerful tools in 
efficiently exploring the vast design space and identifying and 
optimal solutions [2]. These methods enable structural 
engineers to consider a multitude of design parameters, leading 
to structures that are not only cost-effective but also robust in 
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the face of dynamic loads and uncertainties [3]. Implementing 
AI in the optimization of steel moment frame structures requires 
collaboration between structural engineers, data scientists, and 
domain experts [4]. Additionally, it is crucial to validate AI 
models with real-world data and adhere to industry standards 
and codes for structural design and safety [5].  

Over the past year, the advancements in AI have played a 
pivotal role in enhancing the efficiency, reliability, and 
sustainability of designing these critical structural elements [6]. 
Through the utilization of machine learning algorithms, 
optimization processes have become more dynamic, allowing 
for the consideration of a myriad of variables and parameters 
that were once challenging to incorporate [7]. 

Meta-heuristic algorithms for assessing the collapse risk of 
steel moment frame mid-rise buildings are presented by Jough 
and Şensoy [8] in order to provide a better risk management 
strategy in steel moment frames. Steel Moment-Resisting 
Frame Dependability via Interval Analysis using the FCM-PSO 
Method is studied by Jough and Şensoy [9] to enhance accuracy 
and decrease execution time in calculation of seismic fragility 
curves. Assessment of out-of-plane behavior of non-structural 
masonry walls using FE simulations is presented by Jough and 
Golhashem [10] in order to reduce self-weight axial 
compression of the walls with modern lightweight masonry 
units. To analyze variability via the creation of a tectonic 
fragility curved for an SMRF construction, an adaptive neuro-
fuzzy method dependent on the fuzzy C-means techniques is 
implemented by Jough and Aval [11] to incorporate epistemic 
uncertainty and increasing calculation accuracy. Road map to 
BIM applications for identifying and contextualizing variables 
of infrastructure projects is presented by Ghasemzadeh et al. 
[12] to identify and prove the existing lack of using BIM for 
infrastructure projects. Epistemic Uncertainty Treatment Using 
Group Method of Data Handling Algorithm in Seismic 
Collapse Fragility is presented by Jough et al. [13] to increase 
precision, and reliability of the outcomes results. Uncertainty 
interval analysis of steel moment frame by development of 3d-
fragility curves towards optimized fuzzy method is presented 
by Jough and Ghasemzadeh [14] to enhance accuracy and 
reduce execution time in driving the 3D-fragility curves. The 
contribution of steel wall posts to out-of-plane behavior of non-
structural masonry walls is investigated by Jough [15] to 
provide smaller modification factors in masonry walls with wall 
post. 

Soori et al. [16]-[19] proposed virtual machining methods for 
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improving and assessing Computer Numerical Control (CNC) 
machining in virtual settings. Soori et al. [20] investigated the 
use of AI and machine learning to CNC machine tools in order 
to increase efficiency and profitability in component production 
processes. In order to enhance the functionality of machined 
parts, Soori and Arezoo [21] examined the subject of residual 
stress measurement and reduction in machining operations. To 
enhance the integrity of the surface and reduce residual stress 
while grinding Inconel 718, Soori and Arezoo [22] 
recommended employing the Taguchi optimization approach to 
determine the ideal machining settings. Dastres and Soori [23] 
examined how to utilize advancements in web-based decision 
support systems to provide solutions for data warehouse 
administration through support for decision-making. Dastres 
and Soori [24] examined uses of artificial neural networks to 
investigate methods to implement them to increase the efficacy 
of products. Dastres and Soori [25] suggested using 
communication systems in environmental issues to reduce the 
detrimental impacts of technology development on natural 
disasters.  

Dimensional, geometrical, tool deflection, and thermal 
defects have been modified by Soori and Arezoo [26] to 
improve accuracy in 5-axis CNC milling processes. Recent 
developments in published articles are examined by Soori et al. 
[27] in order to evaluate and enhance deep learning, machine 
learning, and AI's effects on advanced robots. Soori and Arezoo 
[28] created a virtual machining system application to 
investigate if the tool life and cutting temperature throughout 
milling operations are influenced by the cutting parameters. 
Soori and Arezoo [29] investigated how coolant affected the 
cutting temperature, surface roughness, and tool wear when 
turning Ti6Al4V alloy. Soori et al. [30] studied how to improve 
quality control and streamline part production operations in 
industry 4.0 smart factories by utilizing the Internet of Things. 
To reduce the amount of wear on cutting tools while drilling, 
Soori and Arezoo [31] proposed a virtual machining system. 
Soori and Arezoo [32] reduced surface roughness and residual 
stress to raise the overall quality of products made with abrasive 
water jet cutting. In order to improve the precision of five-axis 
milling operations for turbine blades, Soori [33] calculated and 
compensated for deformation errors. Soori and Arezoo [34] 
studied the application of the finite element approach in CNC 
machine tool modification in order to assess and improve 
accuracy in CNC machining processes and components. Soori 
et al. [35] studied several energy use optimization techniques in 
order to assess and optimize energy consumption in industrial 
robots. Soori et al. [36] examined the negative and positive 
aspects of virtual manufacturing systems in order to assess and 
improve the part production process in Industry 4.0. In order to 
develop the supply chain management in advanced 
manufacturing, artificial neural networks are studied by Soori 
et al. [37]. 

This review aims to critically evaluate the role of AI in risk 
assessment and optimization processes for steel moment frame 
structures, exploring the advantages, challenges, and potential 
avenues for future research. Therefore, it is possible to review 
and assess the latest developments in AI applications for the 

optimization of steel moment frame structures, allowing for the 
examination and modification of the structural design, analysis, 
and performance processes. 

II. GENERATIVE DESIGN BY TOPOLOGY OPTIMIZATION 

Topology optimization is a specific area where AI has made 
an impact. This approach involves determining the optimal 
layout of materials within a given design space to achieve the 
best structural performance. AI algorithms, especially 
generative design algorithms, can explore a wide range of 
design possibilities for steel moment frame structures [38]. 
They can optimize the distribution of material, shape, and 
connections to achieve the best structural performance while 
meeting specified constraints [6]. AI algorithms can assist in 
generating and analyzing complex topologies, helping 
engineers to discover innovative and efficient structural forms 
[39]. Here's how these technologies can be integrated into the 
design process: 
1. Topology optimization: This is a computational design 

method which iteratively optimizes the material 
distribution within a given design space to achieve the best 
structural performance under specified constraints [40]. In 
the context of steel moment frame structures, topology 
optimization can help determine the optimal placement and 
configuration of structural elements such as beams and 
columns to maximize structural efficiency and minimize 
material usage [41]. This process typically involves 
defining design objectives (e.g., minimizing weight, 
maximizing stiffness) and constraints (e.g., displacement 
limits, stress limitations) [42], [43]. 

2. Generative design: Generative design, often powered by AI 
algorithms, explores a range of design possibilities by 
generating numerous design iterations based on specified 
input parameters and constraints. In the context of steel 
moment frame structures, generative design can explore 
various configurations and geometries, providing a broader 
design space for optimization [44]. Through the analysis 
and learning of previous successful ideas, AI can assist the 
generative design system in order to suggest more creative 
and effective solutions for problems [45]. 

3. AI in optimization: Machine learning algorithms can be 
employed to analyze historical data, simulation results, and 
real-world performance data to identify patterns and 
correlations. AI can assist in predicting the structural 
performance of different design configurations, helping 
designers make informed decisions during the generative 
design process [46]. Optimization algorithms, driven by 
AI, can efficiently navigate the complex design space and 
converge towards optimal or near-optimal solutions [47]. 

4. Integration and Iteration: The generative design and 
topology optimization processes should be iterative, 
allowing designers to refine and improve the design over 
multiple cycles [48]. AI algorithms can continuously learn 
from the results of previous design iterations, providing 
insights that contribute to better-informed decision-making 
in subsequent iterations [49]. 

5. Sensitivity analysis: AI can be used to perform sensitivity 
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analyses, helping designers understand how changes in 
design parameters impact structural performance [50]. This 
information is valuable for making trade-offs between 
conflicting objectives and refining the design to meet 
specific requirements. 

6. Collaboration and visualization: AI-powered tools can 
facilitate collaboration among multidisciplinary teams by 

providing intuitive visualizations of design alternatives and 
their associated performance metrics [49]. Virtual and 
augmented reality technologies can enhance the 
visualization of design solutions, aiding in better 
communication and decision-making [51]. 

The intelligent generation method of innovative structures 
using machine learning is shown in Fig. 1 [52]. 

 

 

Fig. 1 The intelligent generation method of innovative structures using machine learning [52]. 
 

By combining generative design, topology optimization, and 
AI, engineers and architects can leverage computational tools 
to explore innovative and efficient steel moment frame 
structures, ultimately leading to optimized designs with 
improved performance and reduced material usage [53]. 

III. PERFORMANCE PREDICTION BY MATERIAL BEHAVIOR 

MODELING  

The use of AI in predicting the performance of steel moment 
frame structures through material behavior modeling and 
optimization is an innovative approach which can enhance the 
design and performance of such structures. AI can be used to 
model the behavior of steel materials under different conditions 
[54]. This includes predicting how steel moment frames will 
respond to various loads and environmental factors, aiding in 
the selection of optimal materials [55]. AI techniques, 
particularly machine learning models, can be trained to predict 
the performance of steel moment frame structures under 
different loading conditions [56]. This can aid in the early 
stages of design by providing quick and accurate assessments 
of the structural response. Here's a general outline of how AI 
can be applied in this context: 
1. Data collection and preprocessing: gather data on material 

properties, historical performance of steel moment frame 
structures, and relevant environmental conditions. 
Preprocess the data to remove noise, outliers, and ensure 
consistency [57]. 

2. Material behavior modeling: develop a material behavior 
model that captures the complex interactions within the 
steel moment frame structure. Use AI techniques, such as 
machine learning algorithms, to model the material 
behavior based on the collected data [58]. Consider 
incorporating nonlinear material models that better 
represent the behavior of steel under various loading 
conditions [59].  

3. Performance prediction: train the AI model to predict the 
performance of steel moment frame structures under 
different scenarios, including varying loads, environmental 
conditions, and material properties. Validate the model 
using a separate set of data to ensure its accuracy and 
reliability [60]. 

4. Optimization: utilize optimization algorithms within the AI 
framework to enhance the design of steel moment frame 
structures. Optimize parameters such as member sizes, 
connections, and material specifications to improve overall 
performance, considering factors like cost, safety, and 
sustainability [61]. 

5. Uncertainty and sensitivity analysis: incorporate 
uncertainty analysis to account for variations in material 
properties, external loads, and other factors that may affect 
performance. Conduct sensitivity analysis to identify 
critical parameters that significantly influence the behavior 
of the steel moment frame structures. 

6. Real-Time monitoring and adaptation: implement real-
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time monitoring systems to collect data on the actual 
performance of structures in the field. Use this real-time 
data to continuously update and improve the AI model, 
allowing for adaptive optimization over the lifespan of the 
structures [62]. 

7. Interdisciplinary collaboration: foster collaboration 
between structural engineers, material scientists, and AI 
experts to ensure a comprehensive understanding of the 

interactions between material behavior and structural 
performance. 

8. Regulatory compliance: ensure that any proposed 
optimizations and designs comply with relevant building 
codes and safety standards [63]. 

An advanced machine-learning method for deriving state-
dependent fragility curves of existing steel moment frames is 
presented in Fig. 2 [64]. 

 

 

Fig. 2 An advanced machine-learning method for deriving state-dependent fragility curves of existing steel moment frames [64] 
 

By integrating AI into the prediction and optimization 
processes, more robust and efficient steel moment frame 
structures can be created which are better tailored to specific 
conditions and requirements. This approach has the potential to 
revolutionize the field of structural engineering, making 
designs more adaptive, cost-effective, and resilient [65]. 

IV. STRUCTURAL ANALYSIS USING FINITE ELEMENT 

ANALYSIS 

Use AI can enhance FEA by automating the analysis process, 
reducing computational time, and improving accuracy. 
Machine learning algorithms can learn from past simulations to 
predict structural behavior under different scenarios [66]. 
Integrating FEA with AI optimization in the design of steel 
moment frame structures provides a powerful tool for engineers 
to create efficient, cost-effective, and high-performance designs 
[67]. This approach enables the exploration of a vast design 
space, leading to innovative solutions that may not be apparent 
through traditional design processes [68]. There are three steps 
in applications of finite element analysis using structural 
analysis. 
 Modeling: Create a detailed 3D model of the steel moment 

frame structure using FEA software. Define the geometry, 
material properties, and boundary conditions accurately. 

 Loading: Apply appropriate loads and constraints to 
simulate real-world conditions. Consider various load 
cases, such as gravity loads, lateral loads, and seismic loads 

[69]. 
 Analysis: Perform FEA to obtain the structural response, 

including stresses, strains, and deformations. Evaluate the 
structure's performance under different loading scenarios. 

The applications of AI in Structural Analysis and 
optimizations can be defined as 
 Objective function definition: Define the optimization 

goals, such as minimizing material usage, reducing weight, 
or maximizing structural performance under certain criteria 
(e.g., minimizing deflections or stresses). 

 Parameterization: Identify design parameters that can be 
adjusted to achieve the optimization goals. These 
parameters may include member sizes, connection details, 
and material properties [70]. 

 AI Algorithms: Utilize AI algorithms, such as genetic 
algorithms, particle swarm optimization, or machine 
learning techniques, to iteratively adjust the design 
parameters and improve the structure's performance [56]. 

 Integration with FEA: Adapt the AI optimization process 
to the FEA software to provide accurate evaluation of the 
structural performance [71]. 

As a result, the benefits of structural analysis using Finite 
Element Analysis can be explained as, 
1. Efficiency: Speed up the design process by automating the 

exploration of a vast design space. 
2. Improved Performance: Identify innovative and optimized 

solutions that may not be apparent through traditional 
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design approaches [72]. 
3. Adaptability: Easily adapt to changes in design 

requirements or loading conditions through rapid 
optimization iterations. 

4. Cost-Effective: Optimize designs for efficiency, 
potentially reducing material usage and construction costs 

[39], [73]. 
5. Data-Driven Decision Making: Use data from simulations 

and optimizations to inform decision-making in the design 
and construction phases [74]. 

The von Mises stress progressive contour for the designed 
beam–column connection structures is presented in Fig. 3 [75]. 

 

 

Fig. 3 The von Mises stress progressive contour for the designed beam–column connection structures [75] 
 

The integration of FEA and AI in the optimization of steel 
moment frame structures holds the potential to revolutionize the 
way engineers approach structural design, leading to more 
efficient, cost-effective, and high-performance solutions. 

V.  DATA-DRIVEN DESIGN 

Data-driven design and the integration of AI in the 
optimization of steel moment frame structures represent a 
promising approach for enhancing the efficiency and 
performance of structural design processes [76]. AI can 
leverage data from past projects and simulations to inform the 
design process. Historical data on structural performance, 
failures, and maintenance can be valuable in improving the 
reliability and efficiency of steel moment frame designs [77]. 
Here's how these concepts can be applied in the context of steel 
moment frame structures: 

A. Data-Driven Design 

Data Collection: Gather historical data on the performance of 
steel moment frame structures. This can include data on 
material properties, structural configurations, loading 
conditions, and performance under various events (e.g., 
earthquakes) [78]. 

Database Creation: Build a comprehensive database that 
catalogs the collected data. This database serves as the 
foundation for training and validating machine learning models 
[79]. 

B. AI in Optimization 

Machine Learning Algorithms: Implement machine learning 
algorithms in order to analyze the collected data and identify 
patterns, correlations, and trends that may not be apparent 
through traditional methods. Supervised learning can be 
employed to predict structural responses based on input 
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parameters, while unsupervised learning can help in 
discovering hidden patterns [80]. 

Optimization Algorithms: Utilize optimization algorithms, 
such as genetic algorithms or particle swarm optimization, in 
conjunction with AI to iteratively search for the best design 
parameters. These algorithms can consider multiple design 
variables, such as member sizes, connection details, and 
material properties, to find the optimal configuration [56], [81]. 

C. Integration of DDD and AI in Structural Design 

Performance Prediction: Develop AI models that can predict 
the performance of steel moment frame structures under 
different loading conditions. This can assist designers in 
making informed decisions during the early stages of the design 
process [82]. 

Design Parameter Optimization: Implement AI-driven 
optimization algorithms to search for the most efficient and 
cost-effective design parameters, considering factors like 
structural safety, material usage, and construction costs [83]. 

Real-Time Decision Support: Incorporate AI into the design 
process to provide real-time decision support. Designers can 
interact with the system, receive suggestions, and explore 
design alternatives based on the AI's analysis of the input 
parameters. 

D. Benefits of the Approach 

Efficiency: DDD with AI can significantly reduce the time 
required for design iterations by automating the analysis and 
optimization processes [84]. 

Performance Improvement: The integration of AI allows for 
a more comprehensive exploration of the design space, 
potentially leading to superior structural performance. 

Cost Optimization: By considering various design 
parameters and their impact on structural behavior, AI can 
contribute to the optimization of material usage and 
construction costs [85]. 

E. Challenges and Considerations 

Data Quality: The success of DDD and AI hinges on the 
quality and quantity of available data. Incomplete or inaccurate 
data may lead to unreliable predictions and optimizations. 

Interpretability: Ensuring that the AI models provide 
interpretable results is crucial for the acceptance and 
understanding of the design decisions made by the system. 

Ethical Considerations: As with any AI application, ethical 
considerations must be taken into account, particularly when it 
comes to safety-critical structures like buildings. 

Implementing data-driven design with AI in the optimization 
of steel moment frame structures requires a multidisciplinary 
approach involving structural engineering, data science, and 
computer science. Additionally, collaboration with domain 
experts and continuous validation against real-world data is 
essential to ensure the reliability and effectiveness of the 
developed models. 

VI. RISK ASSESSMENT 

The AI plays a pivotal role in risk assessment, providing a 

comprehensive understanding of potential vulnerabilities and 
failure modes in steel moment frame structures. By leveraging 
probabilistic models and advanced data analytics, AI facilitates 
a more nuanced evaluation of uncertainties associated with 
material properties, loading conditions, and seismic events [86]. 
This enables engineers to make informed decisions, optimizing 
designs to mitigate potential risks and enhance the overall 
safety and reliability of structures. AI can analyze historical 
data and current conditions to assess risks associated with steel 
moment frame structures [87]. This includes predicting 
potential failure modes, identifying vulnerabilities, and 
recommending measures to mitigate risks. Risk assessment in 
the context of utilizing AI in the optimization of steel moment 
frame structures involves identifying, evaluating, and 
mitigating potential risks associated with the application of AI 
in structural engineering [88]. Here are some key aspects to 
consider: 

A. Data Quality and Integrity 

Risk: Inaccurate or incomplete data used for training AI 
models can lead to suboptimal or unsafe structural designs. 

Mitigation: High-quality data collection, cleaning, and 
validation processes can be presented [89]. 

B. Model Accuracy and Reliability 

Risk: AI models may not accurately predict the behavior of 
steel moment frame structures, leading to design errors. 

Mitigation: AI models using independent datasets and real-
world case studies can be validated. So, feedback loops for 
continuous model improvement can be provided [90]. 

C. Interpretability of AI Models 

Risk: Lack of interpretability in AI models can make it 
challenging to understand how decisions are made, potentially 
leading to distrust. 

Mitigation: Advanced AI models and explanations for model 
decisions can be used. Engineers can understand and trust the 
optimization recommendations in terms of process optimization 
[55]. 

D. Uncertainty and Sensitivity Analysis 

Risk: AI models may not adequately account for 
uncertainties in material properties, loading conditions, or other 
variables. 

Mitigation: Analyses can be implemented in order to assess 
the impact of variations in input parameters on the structural 
optimization results [91]. 

E. Ethical Considerations 

Risk: Unintended biases in the data or model may result in 
unfair or unsafe design recommendations. 

Mitigation: AI models for biases can be reviewed to follow 
ethical guidelines and standards in AI development [92]. 

F. Cybersecurity 

Risk: AI systems may be vulnerable to cyberattacks, 
potentially compromising the integrity of the structural 
optimization process. 

Mitigation: Robust cybersecurity measures, including 
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encryption, secure data storage, and regular security audits can 
be implemented [93]. 

G. Regulatory Compliance 

Risk: Failure to comply with industry regulations and 
standards may lead to legal and safety issues [94]. 

Mitigation: Relevant regulations in structural engineering 
can be used in order to provide AI-based optimizations based 
on established codes and standards. 

H. Human-In-The-Loop Integration 

Risk: Overreliance on AI without human oversight may 
result in missed engineering considerations. 

Mitigation: AI technology can be integrated by 
Implementing HITL approaches to combine AI insights with 
human expertise [95]. 

I. Long-Term Performance and Adaptability 

Risk: AI models may become outdated or less effective over 

time as structural design practices evolve. 
Mitigation: Strategies for continuous monitoring, updating, 

and adapting AI models can be developed to ensure they remain 
relevant and effective [96]. 

J. Communication and Collaboration 

Risk: Lack of communication and collaboration between AI 
specialists and structural engineers may hinder successful 
implementation. 

Mitigation: Advanced collaboration between AI experts and 
structural engineers can be implemented. So, the process can 
facilitate effective communication to ensure that the 
optimization process aligns with engineering requirements 
[97]. 

Utilizing energy-based approximation analysis, the 
incremental collapse durability of momentary steel frameworks 
constructed with various connecting details is evaluated which 
is shown in Fig. 4 [98]. 

 

 

Fig. 4 Evaluation of progressive collapse resistance of steel moment frames designed with different connection details using energy-based 
approximate analysis [98] 

 
By addressing these considerations, engineers can enhance 

the robustness and reliability of AI-based optimization in steel 
moment frame structures, minimizing potential risks and 
ensuring safer and more efficient designs. 

VII. CONSTRUCTION OPTIMIZATION 

Optimizing the construction of steel moment frame 
structures using AI involves leveraging AI algorithms and 
technologies to enhance various aspects of the construction 
process. Optimizing the design and construction of steel 
moment frame structures using AI involves leveraging 
advanced computational techniques to enhance efficiency, 
reduce costs, and improve overall performance [6]. AI can 
optimize construction processes by analyzing project 
schedules, resource allocation, and cost estimations. This can 
lead to more efficient construction timelines and cost-effective 
strategies for erecting steel moment frame structures. 
Implementing AI in the optimization of steel moment frame 

structures requires collaboration between structural engineers, 
construction professionals, and AI experts [56], [99]. It is 
essential to ensure that the AI applications align with industry 
standards and regulations while addressing the specific 
challenges of steel frame construction [100]. Here are some 
ways AI can be applied to optimize the construction of steel 
moment frame structures: 

A. Design Optimization 

Generative Design: AI algorithms can be used to explore 
multiple design possibilities and identify the most efficient and 
cost-effective steel moment frame configurations. 

Parametric Design: Parametric modeling can be 
implemented to enable quick adjustments to the design based 
on various parameters, allowing for optimization in real-time 
[101]. 

B. Material Selection 

AI-driven Material Analysis: AI can be utilized for analyzing 
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the properties of different materials, helping to select the most 
suitable and cost-effective materials for the steel moment frame 
construction. 

C. Construction Planning and Scheduling 

Predictive Analytics: Predictive analytics can be used to 
forecast potential delays, resource constraints, and other project 
risks, enabling proactive adjustments to the construction 
schedule. 

Resource Allocation: AI algorithms can be used to optimize 
the allocation of construction resources, such as labor, 
equipment, and materials, to maximize efficiency [102]. 

D. Project Management 

Risk Management: AI-powered risk management systems 
can be implemented to identify and mitigate potential risks in 
the construction process, minimizing the likelihood of delays or 
cost overruns. 

Real-time Monitoring: IoT sensors and AI to monitor 
construction activities can be utilized in real-time to provide 
immediate feedback and enabling quick responses to deviations 
from the plan [103]. 

E. Quality Control 

Computer Vision and Image Analysis: Computer vision 
technologies can be employed to assess the quality of welds, 
connections, and other critical components during the 
construction process. 

Machine Learning for Defect Detection: Machine learning 
models can be used to detect potential defects in steel 
components, ensuring the quality and safety of the final 
structure. 

F. Cost Estimation 

AI-driven Cost Models: AI models can be developed which 
can accurately estimate the costs associated with different 
phases of the steel moment frame construction, helping project 
managers plan budgets more effectively [7]. 

G. Energy Efficiency and Sustainability 

Optimization for Sustainability: AI can be used to optimize 
the design and construction processes with a focus on 
sustainability, incorporating energy-efficient materials and 
practices. 

H. Supply Chain Optimization 

AI-driven Supply Chain Management: AI can be applied to 
optimize the supply chain by predicting material requirements, 
managing inventory, and identifying potential bottlenecks 
[104]. 

I. Post-Construction Performance Monitoring 

Sensor Data Analysis: AI algorithms can be implemented to 
analyze sensor data from the constructed steel moment frame 
structure to monitor its performance over time and identify any 
maintenance or retrofitting needs [105]. 

J. Collaborative Platforms 

AI-enhanced Collaboration: AI-powered collaborative 
platforms can be utilized to facilitate communication and 
coordination among various stakeholders involved in the 
construction project [106]. 

Fig. 5 presents a grouping technique for optimizing steel 
skeleton structures using a combinatorial search algorithm 
based on a fully stressed design [107]. 

 

 

Fig. 5 A grouping technique for optimizing steel skeleton structures using a combinatorial search algorithm based on a fully stressed design 
[107] 

 
By integrating these AI-driven approaches, construction 

processes for steel moment frame structures can be optimized 
for efficiency, cost-effectiveness, sustainability, and overall 
project success. Collaboration among architects, engineers, 
contractors, and AI specialists is crucial for the successful 
implementation of these technologies. 

VIII.  SENSOR DATA INTEGRATION 

Integrating sensor data with AI can significantly enhance the 
optimization of steel moment frame structures in various ways. 

Steel moment frame structures are commonly used in buildings 
and other infrastructure to resist lateral loads such as wind or 
seismic forces [108]. The integration of sensor data and AI in 
the optimization process can lead to improved performance, 
increased safety, and more efficient designs [109]. 
Incorporating data from sensors embedded in the structure 
allows for real-time monitoring [110]. AI algorithms can 
analyze these data to detect structural anomalies, predict 
potential issues, and recommend maintenance or intervention 
strategies [111]. Here's how this integration can be beneficial: 
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A. Real-Time Structural Health Monitoring 

Sensors placed on the structure can continuously monitor 
various parameters such as strain, displacement, acceleration, 
and temperature. 

AI algorithms can process this real-time sensor data to assess 
the structural health of the moment frame. Any anomalies or 
deviations from expected behavior can be quickly identified 
[112]. 

B. Predictive Maintenance 

AI models can analyze historical sensor data to predict 
potential issues or failures before they occur. This allows for 
proactive maintenance and reduces the risk of unexpected 
structural failures, ensuring the long-term reliability of the steel 
moment frame [113]. 

C. Optimization of Design Parameters 

AI algorithms can analyze large datasets, including sensor 
data and historical performance records, to optimize design 
parameters for steel moment frame structures. 

The optimization process may consider factors such as 
material properties, cross-sectional dimensions, and connection 
details to enhance structural performance while minimizing 
costs [108]. 

D. Adaptive Structural Control 

AI can be applied to develop adaptive control systems that 
adjust in real-time based on sensor feedback. This adaptive 
control can optimize the stiffness and damping characteristics 
of the moment frame, improving its ability to withstand 

dynamic loads [114]. 

E. Energy Efficiency 

Sensor data, combined with AI, can be used to optimize 
energy consumption in buildings with steel moment frame 
structures. 

AI algorithms can control heating, ventilation, and air 
conditioning systems based on real-time occupancy and 
environmental conditions, leading to energy savings [115]. 

F. Seismic Performance Enhancement 

AI can be employed to develop advanced seismic retrofitting 
strategies based on real-time seismic sensor data. 

The system can adjust damping devices or implement other 
measures to enhance the structure's resilience during seismic 
events [116]. 

G. Data-Driven Decision Making 

AI-driven analytics can provide insights into structural 
behavior, helping engineers and decision-makers make 
informed choices during the design, construction, and 
maintenance phases. 

H. Integration with Building Information Modeling 

Sensor data can be integrated with BIM to create a 
comprehensive digital twin of the structure. 

AI algorithms can then simulate various scenarios, enabling 
more accurate predictions of structural behavior under different 
conditions. 

Dynamic reaction of a multi-story structure is shown in Fig. 
6 [117]. 

 

 

Fig. 6 Practical implementation of structural health monitoring in multi-story buildings [117] 
 

In summary, integrating sensor data with AI in the 
optimization of steel moment frame structures enhances their 

performance, safety, and efficiency throughout their lifecycle. 
This approach allows for data-driven decision-making, 
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predictive maintenance, and the development of adaptive 
strategies to ensure the resilience of these structures in the face 
of changing conditions. 

IX. ADAPTIVE STRUCTURAL SYSTEMS 

Adaptive structural systems refer to systems that can adjust 
their properties or behavior in response to changing external 
conditions. When applied to the optimization of steel moment 
frame structures using AI, it involves leveraging AI techniques 
to enhance the design, analysis, and performance of these 
structures [56], [118]. AI can be used to develop adaptive 
structural systems that can adjust in real-time to changing 
conditions [119]. This includes dynamic control of damping 
systems, shape-changing elements, or other features to optimize 
performance under varying loads [120]. Here's a breakdown of 
how adaptive structural systems and AI can be integrated for 
optimizing steel moment frame structures: 

A. Design Optimization 

Generative Design: AI algorithms can be employed to 
generate multiple design alternatives based on specified criteria 
and constraints. This helps in exploring a wide design space to 
identify optimal configurations for steel moment frame 
structures [121]. 

Topology Optimization: AI-driven topology optimization 
algorithms can optimize the layout and distribution of material 
within the structure to achieve maximum strength and stiffness 
while minimizing weight [122]. 

B. Structural Analysis 

Machine Learning for Analysis: Machine learning 
algorithms can be trained on large datasets of structural 
analyses to predict the behavior of steel moment frame 
structures under various loading conditions. This can lead to 
faster and more efficient analysis processes [123]. 

C. Performance Monitoring and Control 

Sensor Integration: Adaptive systems often involve the 

integration of sensors to monitor real-time structural 
performance [124]. AI algorithms can process the data from 
these sensors to detect anomalies, assess structural health, and 
make informed decisions about necessary adjustments [125]. 

Active Damping Systems: AI can be applied to control active 
damping systems within the structure. These systems adjust the 
stiffness or damping characteristics of the frame dynamically to 
mitigate vibrations or respond to changing environmental 
conditions [126]. 

D. Material Selection 

Material Behavior Prediction: AI can assist in predicting the 
behavior of different materials under varying conditions, aiding 
in the selection of optimal materials for specific components of 
steel moment frame structures [127]. 

E. Energy Efficiency 

Optimal Control Strategies: AI algorithms can optimize 
control strategies for energy-efficient operation of adaptive 
components within the structure, such as adjusting the stiffness 
of dampers to minimize energy dissipation during seismic 
events [128]. 

F. Learning from Performance Data 

Feedback Loops: Performance data from the actual operation 
of the structure can be fed back into the AI system to 
continuously improve its predictions and decision-making 
processes. This creates a feedback loop that enhances the 
adaptive capabilities over time [129]. 

G. Safety and Reliability 

Risk Assessment: AI can contribute to risk assessment by 
considering uncertainties in design parameters, construction 
variations, and environmental conditions [130]. This can 
improve the safety and reliability of steel moment frame 
structures [131]. 

Actuation concepts for adaptive high-rise structures 
subjected to static wind loading are shown in Fig. 7 [132]. 

 

 

Fig. 7 Actuation concepts for adaptive high-rise structures subjected to static wind loading [132] 
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The integration of adaptive structural systems with AI in the 
optimization of steel moment frame structures represents a 
holistic approach to design and operation [118]. It considers not 
only the initial design phase but also the dynamic and changing 
conditions throughout the structure's lifespan. This synergy 
holds the potential to create more resilient, efficient, and safer 
structures. 

X.  ENERGY EFFICIENCY 

Improving energy efficiency in the optimization of steel 
moment frame structures using AI involves integrating 
advanced algorithms and models to enhance the design, 
construction, and operation phases [56], [133]. AI can optimize 
the energy performance of steel moment frame structures by 
analyzing environmental conditions, occupancy patterns, and 
energy consumption data. This can inform decisions about 
heating, ventilation, air conditioning (HVAC) systems, 
lighting, and other energy-related components [134]. Here are 
several ways AI can contribute to energy-efficient optimization 
in steel moment frame structures: 

A. Design Optimization 

Generative Design: AI algorithms can explore a vast design 
space, generating numerous design alternatives for steel 
moment frame structures. These algorithms can consider 
energy-efficient parameters, such as material usage, structural 
integrity, and thermal performance [135]. 

Topology Optimization: AI can assist in optimizing the 
layout of structural elements to minimize material usage while 
maintaining structural integrity, consequently reducing energy 
requirements for both fabrication and transportation of 
materials [136]. 

B. Performance Prediction 

Machine Learning Models: Machine learning models can be 
developed in order to predict the energy performance of steel 
moment frame structures based on various factors like 
geometry, materials, and environmental conditions [137]. 
These models can guide designers to choose the most energy-
efficient options [138]. 

Simulation and Analysis: AI-powered simulations can 
predict the behavior of structures under different conditions, 
allowing for the selection of designs that optimize energy 
efficiency over the lifetime of the structure [139]. 

C. Material Selection 

Data-Driven Material Choices: AI can analyze extensive 
databases of material properties, considering factors like 
strength, durability, and thermal conductivity. This analysis 
helps in choosing materials that contribute to the energy 
efficiency of the structure. 

Recyclability and Sustainability: AI can assess the 
environmental impact of materials, promoting the use of 
sustainable and recyclable materials, thereby reducing the 
overall energy footprint of the structure [140]. 

D. Construction Optimization 

Project Management: AI can optimize construction 

schedules, resource allocation, and logistics to minimize energy 
consumption during the construction phase. 

Robotics and Automation: AI-driven robotics and 
automation in construction processes can be implemented to 
improve efficiency and reduce energy-intensive manual labor 
[141]. 

E. Operational Efficiency 

Smart Building Systems: AI for smart building management 
systems can be utilized which can optimize energy 
consumption during the operational phase. This includes 
intelligent HVAC systems, lighting control, and predictive 
maintenance. 

Occupancy and Usage Monitoring: AI-driven sensors can be 
implemented to monitor occupancy patterns and usage, 
enabling the adjustment of building systems in real-time to 
minimize energy wastage [142]. 

1. Life Cycle Assessment 

AI-Based Life Cycle Analysis: Life cycle assessments using 
AI can be implemented to evaluate the environmental and 
energy impact of steel moment frame structures from raw 
material extraction to end-of-life considerations [143]. 

2. Regulatory Compliance 

AI for Compliance Monitoring: AI can be used to ensure that 
the constructed steel moment frame structures comply with 
energy efficiency regulations and standards [144]. 

Development of optimum cold-formed steel sections for 
maximum energy dissipation in uniaxial bending is shown in 
Fig. 8 [145]. 

Implementing AI in the optimization of steel moment frame 
structures for energy efficiency requires a multidisciplinary 
approach involving structural engineering, materials science, 
machine learning, and sustainability practices [146]. 
Collaboration between experts in these fields can lead to 
innovative solutions that significantly reduce the environmental 
impact of construction projects [147]. 

In order to obtain the optimized results in the optimization 
process of steel moment frame structures involving AI requires 
a comprehensive approach, code compliance and safety should 
be considered [148]. AI can assist in ensuring that the designed 
steel moment frame structures comply with relevant building 
codes and safety standards [149]. Automated checks can help 
identify potential issues and ensure that the final design meets 
regulatory requirements. Here are several key considerations 
and steps you might take: 
1. Regulatory Compliance: 
 National, and international building codes and standards 

relevant to steel moment frame structures can be checked 
[87]. 

 AI-driven optimization adheres to these codes and 
standards can be implemented. For example, in the United 
States, the American Institute of Steel Construction (AISC) 
standards are crucial [148]. 

2. Risk Assessment: 
 Risk assessment can be conducted to identify potential 

safety hazards associated with the use of AI in optimizing 
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steel structures. 
 Identified risks can be mitigated to ensure the safety and 

reliability of the structures [65]. 
 

 

 

Fig. 8 Development of optimum cold-formed steel sections for maximum energy dissipation in uniaxial bending [145] 
 

3. Certification and Approval: 
 Structural engineers, architects, and relevant authorities 

can work together to obtain certifications and approvals for 
the AI-driven optimization methods. 

 Optimization process aligns with industry-accepted 
practices can be implemented. So, the process does not 
compromise the structural integrity or safety of the moment 
frame structures [150]. 

4. Quality Assurance: 
 Robust quality assurance procedures can be implemented 

to validate the accuracy and reliability of AI algorithms 
used in the optimization process [151]. 

 The AI models can be updated and validated to account for 
changes in codes, standards, or design requirements [152]. 

5. Data Quality and Security: 
 The quality and integrity of the data used can be tested to 

train and test the AI models. 
 Security measures can be implemented to protect sensitive 

structural data from unauthorized access or manipulation.  
6. Explainability and Transparency: 
 The AI optimization process should be transparent and 

explainable during optimization process to allow engineers 
and stakeholders to understand the decision-making 
process [139]. This is crucial for gaining trust in the AI-
driven optimization and for meeting regulatory 
requirements [153]. 

7. Human-in-the-Loop (HITL): 

 A human-in-the-loop approach can be implemented to 
review and validate AI-driven design decisions. This helps 
in catching any potential oversights or errors that may arise 
during the optimization process [154].  

8. Documentation: 
 Comprehensive documentation of the AI models, 

algorithms, and the optimization process can be 
implemented. 

 Standards, and safety regulations can be considered 
regarding the relevant codes. 

9. Continuous Monitoring and Maintenance: 
 A system for continuous monitoring of the optimized 

structures can be established [155]. 
 Maintenance protocols can be implemented to address any 

issues that may arise over time [156]. 
10. Stakeholder Communication: 
 Stakeholders, including clients, regulators, and project 

teams can be considered. 
 Safety and compliance should be checked throughout the 

project lifecycle. Configurations of strain gauges and 
movement transducers is shown in Fig. 9 [157]. 

By addressing these considerations, one can help ensure that 
AI-driven optimization of steel moment frame structures 
complies with safety standards and regulatory requirements [3]. 
Collaboration with domain experts, transparent processes, and 
ongoing monitoring are key elements in achieving this goal. 
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Fig. 9 Experimental study on square hollow stainless steel tube trusses with three joint types and different brace widths under vertical loads 
[157] 

 
XI. CONCLUSION 

The application of AI in the optimization of steel moment 
frame structures can provide a significant advancement in the 
field of structural engineering. The integration of AI 
technologies has demonstrated the potential to enhance the 
efficiency, performance, and sustainability of steel moment 
frame structures through various optimization processes. AI 
algorithms, such as machine learning and optimization 
techniques, offer the capability to analyze vast amounts of data, 
consider complex design variables, and identify optimal 
solutions for steel moment frame structures. This results in 
structures that not only meet safety and regulatory requirements 
but also achieve superior performance in terms of load-carrying 
capacity, cost-effectiveness, and resilience.  

The integration of AI in the optimization of steel moment 
frame structures marks a significant milestone in the field of 
structural engineering. By considering various interconnected 
factors and parameters simultaneously, AI-driven optimization 
processes can lead to innovative and resource-efficient designs 
that align with sustainability goals. Over the past year, we have 
witnessed the transformative impact of AI on enhancing the 
efficiency, reliability, and sustainability of these critical 
infrastructures. Moreover, AI enables real-time monitoring and 
adaptive control of steel moment frame structures, allowing for 
continuous optimization throughout their lifecycle. This 
dynamic responsiveness to changing conditions, such as 
environmental loads or structural deterioration, contributes to 
increased safety and longevity. 

AI algorithms have proven instrumental in streamlining the 
design process, considering a multitude of variables and 
constraints to arrive at optimal solutions. The ability of AI to 
swiftly analyze vast datasets, predict structural behaviors, and 
iterate through numerous design alternatives has not only 
accelerated the optimization process but has also led to 
structures with improved performance and resilience. 
Furthermore, AI has demonstrated its prowess in adapting to 
dynamic environmental conditions, ensuring that steel moment 
frame structures are not only optimized for current demands but 
are also future-proofed against potential changes and 
uncertainties. The self-learning capabilities of AI systems 
contribute to continuous improvement and refinement of design 
strategies, making them increasingly adept at addressing 
evolving challenges in structural engineering. The ability of AI 

to analyze vast datasets and simulate various scenarios has 
empowered engineers to achieve unprecedented levels of 
precision in optimizing steel moment frame structures. This not 
only contributes to the overall safety and resilience of these 
structures but also enables a more cost-effective and resource-
efficient approach to design and construction. 

While the adoption of AI in structural engineering is 
promising, challenges such as data reliability, model 
interpretability, and ethical considerations must be carefully 
addressed. The need for large datasets, accurate modeling of 
complex structural behaviors, and the interpretability of AI-
driven decisions are areas that demand attention. Additionally, 
the ethical considerations surrounding AI applications in 
structural engineering, such as bias in data and decision-making 
algorithms, warrant careful consideration to ensure the 
responsible use of these technologies. As the field continues to 
evolve, collaboration between structural engineers, data 
scientists, and other stakeholders will be crucial to harness the 
full potential of AI for optimizing steel moment frame 
structures. 

In summary, the integration of AI has the potential to 
revolutionize the design, analysis, and maintenance of steel 
moment frame structures, paving the way for safer, more 
efficient, and environmentally conscious infrastructure in the 
future. 

XII. FUTURE RESEARCH WORKS DIRECTIONS 

The integration of AI in the optimization of steel moment 
frame structures represents a transformative leap in structural 
engineering. As the field continues to evolve, the collaboration 
between structural engineers, data scientists, and AI researchers 
becomes paramount. The evolution of AI in structural 
optimization opens avenues for further research and innovation. 
Integration with Building Information Modeling (BIM), real-
time monitoring systems, and the development of hybrid 
optimization methods are potential directions for future 
exploration. Additionally, addressing the challenges related to 
interpretability and ethical considerations will be crucial for 
establishing trust in AI-driven decision-making processes. AI 
can continue to revolutionize the optimization process of steel 
moment frame structures, fostering a new era of smart, 
adaptive, and resilient infrastructure. This journey exemplifies 
the transformative potential of AI in addressing complex 
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engineering challenges, and as we look forward, the 
collaboration between human ingenuity and AI promises to 
redefine the possibilities in structural design and optimization. 
Future research in this area can explore various directions to 
enhance the efficiency, safety, and cost-effectiveness of 
structural design. Here are some potential research directions: 
1. Integration of Machine Learning Algorithms: Explore the 

integration of machine learning algorithms for predicting 
structural performance under different loading conditions. 
Develop models that can learn from historical data, 
structural behavior, and failure modes to improve design 
predictions. 

2. Multi-Objective Optimization: Extend optimization models 
to consider multiple objectives, such as minimizing cost, 
maximizing structural performance, and reducing 
environmental impact. Investigate techniques to balance 
conflicting objectives in the optimization process. 

3. Uncertainty Quantification: Incorporate uncertainty 
quantification methods to account for variations in material 
properties, construction processes, and loading conditions. 
Develop AI-driven approaches for robust optimization 
considering uncertainties. 

4. Generative Design and Topology Optimization: Explore 
generative design techniques to automatically generate and 
refine structural layouts and configurations. Investigate 
topology optimization methods that leverage AI to improve 
the efficiency of the design process. 

5. Advanced Structural Health Monitoring (SHM): Integrate 
AI for real-time structural health monitoring to assess the 
in-service performance of steel moment frame structures. 
Develop algorithms for anomaly detection and predictive 
maintenance based on continuous monitoring data. 

6. Human-in-the-Loop Optimization: Investigate the 
integration of human expertise with AI algorithms in the 
optimization process. Develop interactive tools that allow 
structural engineers to guide and validate AI-driven design 
decisions. 

7. Lifecycle Performance Optimization: Extend optimization 
beyond the design phase to consider the entire lifecycle of 
structures. Incorporate AI models for predicting long-term 
durability, maintenance requirements, and end-of-life 
considerations. 

8. Sustainability Optimization: Integrate AI to optimize 
structures for sustainability, considering factors such as 
carbon footprint, energy efficiency, and recyclability. 
Develop tools that support decision-making processes 
aligned with sustainable design principles. 

9. Ethical Considerations and Safety: Address ethical 
considerations related to AI in structural optimization, 
including transparency, accountability, and bias. Prioritize 
safety by ensuring that AI-driven designs comply with 
relevant codes and standards. 

10. Interdisciplinary Collaboration: Foster collaboration 
between structural engineers, computer scientists, and 
domain experts to advance the field through a 
multidisciplinary approach. Encourage the development of 
AI tools that are user-friendly and accessible to 

professionals with varying expertise. 
As technology evolves, these research directions can 

contribute to the ongoing development of AI-driven 
optimization methods for steel moment frame structures, 
ultimately leading to more robust, efficient, and sustainable 
designs. 
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