Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes
Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin
Abstract:
Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.
Keywords: Agro-industrial waste, biomass, briquettes, combustion.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1132222
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038References:
[1] Mekhilef, S., Saidur, R., Safari A., Mustaffa, W. E. S. B.” Biomass energy in Malaysia: Current state and prospects”. Renew Sust Energ Rev, v. 15, pp. 3360-3370, 2011.
[2] Tock, J. Y., Lai, C. L., Lee, K. T., Tan, K. T., Bhatia, S. “Banana biomass as potential renewable energy resource: A Malaysian case study”. Renew Sust Energ Rev. v. 14, pp. 798-805, 2010.
[3] Alaru, M., Kukk, L., Astover, A., Lauk, R., Shanskiy, M., Loit, E. “An agro-economic analysis of briquette production from fibre hemp and energy sunflower”. Ind Crop Prod. v. 51, p. 186-193, 2013.
[4] Ledda, L., Deligios, P. A., Farci, R., Sulas, L. “Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems”. Ind Crop Prod. v. 47, pp. 218-226, 2013.
[5] Tilay, A., Azargohar, R., Drisdelle, M., Dalai, A., Kozinski, J. “Canola meal moisture-resistent fuel pellets: Study on the effects of process variables and additives on the pellet quality and compression characteristics”. Ind Crop Prod. v. 63, p. 337-348, 2015.
[6] Titiloye, J. O., Bakar, M. S. A., Odetoye, T. E. “Thermochemical characterization of agricultural wastes from West Africa”. Ind Crop Prod. v. 47, p. 199-203, 2013.
[7] Roy, M. M., Corscadden, K. W. “An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove”. Appl Energ. v. 99, pp. 206-212, 2012.
[8] Felfli, F. F., Mesa, P. J. M., Rocha, J. D., Filippetto, D., Luengo, C. A., Pippo, W. A. “Biomass briquetting and its perspectives in Brazil”. Biomass Bioenerg. 35, 236-242, 2011.
[9] Bettaieb, F., Khiari, R., Hassan, M. L., Belgacem, M. N., Bras, J., Dufresne, A., Mhenni, M. F. “Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica”. Ind Crop Prod. v. 72, pp. 175-182, 2015.
[10] Gangil, S. “Superiority of intrinsic biopolymeric constituents in briquettes of lignocellulosic crop residues over wood: A TG-diagnosis”. Renew Energ. v. 76, pp. 478-483, 2015.
[11] Mendes, F. M., Heikkilä, E., Fonseca, M. B., Milagres, A. M. F., Ferraz, A., Fardim, P. “Topochemical characterization of sugar cane pretreated with alcaline sulfite”. Ind Crop Prod. v. 69, pp. 60-67, 2015.
[12] Yang, D., Zhong, L. X., Yuan, T. Q., Peng, X. W., Sun, R. C. “Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic followed by alkaline extraction from bamboo”. Ind Crop Prod. v. 43, pp. 141-149, 2013.
[13] Sellin, N., Krohl, D. R., Marangoni, C., Souza, O. “Oxidative fast pyrolysis of banana leaves in fluidized bed reactor”. Renew Energ, v. 96, pp. 56-64, 2016.
[14] Molino, A., Chianese, S., Musmarra, D. “Biomass gasification technology: The state of the art overview”. J Energ Chem, v. 25, pp. 10-25, 2016.
[15] García, R., Pizarro, C., Álvarez, A., Lavín, A. G., Bueno, J. L. “Study of biomass combustion wastes”. Fuel. v. 148, pp. 152-159, 2015.
[16] Maia, B. G. O., Souza, O., Marangoni, C., Rotza, D., Oliveira, A. P. N., Sellin, N. “Production and characterization of fuel briquettes from banana leaves waste”. Chem Eng Trans. v. 37, pp. 439-444, 2014.
[17] Stolarski, M. J., Szczukowski, S. Tworkowski, J., Krzyzaniak, M., Gulczynski, P., Mleczek, M. “Comparison of quality and production cost of briquetes made from agricultural and forest origin biomass”. Renew Energ. v. 57, pp. 20-26, 2013.
[18] Wang, Z., Lei, T., Chang, X., Shi, X., Xiao, J., Li, Z., He, X., Zhu, J., Yang, S. “Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China”. Appl Energ. v. 157, pp. 523-532, 2015.
[19] García, R., Pizzaro, C., Lavín, A. G., Bueno, J. L. “Characterization of Spanish biomass wastes for energy use”. Bioresource Technol. v. 103, pp. 249-258, 2012.
[20] Van Soest, P. J., Wine, R. H. “Determination of lignin and cellulose in acid-detergent fiber with permanganate”. J. Assoc. Official Agr. Chem. v. 51, p. 780-785, 1968.
[21] Granada, E., López González, L. M., Míguez, J. L., Moran, M. “Fuel lignocellulosic briquettes, die design and products study”. Renew Energ. v. 27, p. 561-573, 2002.
[22] Zhang, J., Guo, Y. “Physical properties of solid fuel briquettes made from Caragana korshinskii Kom”. Powder Technol. v. 256, pp. 293-299, 2014.
[23] Yao, B. Y., Changkook, R., Adela, K., Yates, N. E., Sharifi, V. N., Swithenbank, J. “Effect of fuel properties on biomass combustion. Part II. Modelling approach identification of the controlling factors”. Fuel. v. 84, n. 16, pp. 2116-2130, 2005.
[24] Kalembkiewicz, J., Chmielarz, U. “Ashes from co-combustion of coal and biomass: New industrial wastes”. Res Conserv Rec. v. 69, pp. 109-121, 2012.
[25] Fernandes, E. R. K., Marangoni, C., Souza, O., Sellin, N. “Thermochemical characterization of banana leaves as a potential energy source”. Energ Convers Manage. v. 75, pp. 603-608, 2013.
[26] Sulas, L., Franca, A., Sanna, F., Re, G. A., Melis, R., Porqueddu, C. “Biomass characteristics in Mediterranean populations of Piptatherum miliaceum - A native perennial grass species for bioenergy”. Ind Crop Prod. v. 75, pp. 76-84, 2015.
[27] Odetoye, T. E., Onifade, K. R., Abubakar, M. S., Titiloye, J. O. “Thermochemical characterization of Paninari polyandra Bench fruit shell”. Ind Crop Prod. v. 44, pp. 62-66, 2013.
[28] Sänger, M., Werther, J., Ogada, J. "NOx and N2O emission characteristics from fluidized bed combustion of semi-dried municipal sewage sludge”. Fuel. v. 80, p. 167-177, 2001.
[29] Gominho, J., Lourenço, A., Miranda, I., Pereira, H. “Chemical and fuel properties of stumps biomass from Eucalyptus globulis plantations”. Ind Crop Prod. v. 39, pp. 12-16, 2012
[30] Serapiglia, M. J., Mullen, C. A., Boateng, A. A., Cortese, L. M., Bonos, S.A., Hoffman, L. “Evaluation of the impact of compositional differences in switchgrass genotypes on pyrolysis product yield”. Ind Crop Prod. v. 74, pp. 957-968, 2015.
[31] Geng, A., Xin, F., Ip, J.-Y. “Ethanol production from horticultural wastes treated by a modified organosolv method”. Bioresource Technol. v. 104, pp. 715-721, 2012.
[32] Carvalho, W. S., Oliveira, T. J., Cardoso, C. R. “Thermogravimetric analysis and analytical pyrolysis of a variety of lignocellulosic sorghum”. Chem Eng Res Des. v. 95, pp. 337-345, 2015.
[33] Simakova, O. A., Smolentseva, E., Estrada, M., Murzina, E. V., Beloshapkin, S., Willför, S. M., Simakov, A. V., Murzin, D.Y. “From woody biomass extractives to health-promoting substances: Selective oxidation of the lignan hydroxymatairesinol to oxomatairesinol over Au, Pd, and Au-Pd heterogeneous catalysts”. Journal of Catalysis, v. 291, pp. 95-103, 2012.
[34] Luna, F., Crouzillat, D., Cirou, L., Bucheli, P. “Chemical composition and aroma of ecuadorian Cocoa Liquor”. J Agr Food Chem. v. 50, pp. 3527-3532, 2002.
[35] Jahurul, M. H. A., Zaidul, I. S. M., Norulaini, N. A. N., Sahena, F., Jinap, S., Azmir, J., Sharif, K. M., Mohd Omar, A. K. “Cocoa butter fats and possibilities of substitution in food products concerning cocoa varieties, alternative sources, extraction methods, composition, and characteristics”. J Food Eng. v. 117, p. 467-476, 2013.
[36] Torres-Moreno, M., Torrescasana, E., Salas-Salvadó, J., Blanch, C. “Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions”. Food Chem. v. 166, pp. 125-132, 2015.
[37] Saldarriaga, J. F., Aguado, R., Pablos, A., Amutio, M., Olazar, M., Bilbao, J. “Fast characterization of biomass fuels by thermogravimetric analysis (TGA)”. Fuel Process Technol. v. 140, pp. 744-751, 2015.
[38] Manara, P., Vamvuka, D., Sfakiotakis, S., Vanderghem, C., Richel, A., Zabaniotou, A. “Mediterranean agri-food processing wastes pyrolysis after pre-treatment and recovery of precursor materials: a TGA-based kinetic modeling study”. Food Res Int. v. 73, pp. 44-51, 2015.
[39] Greenhalf, C. E., Nowakowski, D. J., Bridgwater, A. V., Titiloye, J., Yates, N., Riche, A., Shield, I. “Thermochemical characterization of straws and high yielding perennial grasses”. Ind Crop Prod. v. 36, pp. 449-459, 2012.
[40] Asadieraghi, M.; Daud, W. M. A. W. “Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions”. Energ Convers Manage. v. 82, pp. 71-82, 2014.