Search results for: Monte Carlo simulation.
3533 Simulation of the Large Hadrons Collisions Using Monte Carlo Tools
Authors: E. Al Daoud
Abstract:
In many cases, theoretical treatments are available for models for which there is no perfect physical realization. In this situation, the only possible test for an approximate theoretical solution is to compare with data generated from a computer simulation. In this paper, Monte Carlo tools are used to study and compare the elementary particles models. All the experiments are implemented using 10000 events, and the simulated energy is 13 TeV. The mean and the curves of several variables are calculated for each model using MadAnalysis 5. Anomalies in the results can be seen in the muons masses of the minimal supersymmetric standard model and the two Higgs doublet model.Keywords: Feynman rules, hadrons, Lagrangian, Monte Carlo, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11263532 Direct Simulation Monte Carlo (DSMC) Algorithm – A Comparison of Mathematica Code with FLUENT 6.2 for Low Knudsen Number
Authors: Nabeel A. Qazi, Absaar ul Jabbar, Khalid Parvez
Abstract:
A code has been developed in Mathematica using Direct Simulation Monte Carlo (DSMC) technique. The code was tested for 2-D air flow around a circular cylinder. Same geometry and flow properties were used in FLUENT 6.2 for comparison. The results obtained from Mathematica simulation indicated significant agreement with FLUENT calculations, hence providing insight into particle nature of fluid flows.Keywords: DSMC algorithm, non continuum gas flows, Monte Carlo methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34213531 Lattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow
Authors: Thomas Fiedler, Irina V. Belova, Graeme E. Murch
Abstract:
Lattice Monte Carlo methods are an excellent choice for the simulation of non-linear thermal diffusion problems. In this paper, and for the first time, Lattice Monte Carlo analysis is performed on thermal diffusion combined with convective heat transfer. Laminar flow of water modeled as an incompressible fluid inside a copper pipe with a constant surface temperature is considered. For the simulation of thermal conduction, the temperature dependence of the thermal conductivity of the water is accounted for. Using the novel Lattice Monte Carlo approach, temperature distributions and energy fluxes are obtained.Keywords: Coupled Analysis, Laminar Flow, Lattice MonteCarlo, Thermal Diffusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19933530 Networks with Unreliable Nodes and Edges: Monte Carlo Lifetime Estimation
Authors: Y. Shpungin
Abstract:
Estimating the lifetime distribution of computer networks in which nodes and links exist in time and are bound for failure is very useful in various applications. This problem is known to be NP-hard. In this paper we present efficient combinatorial approaches to Monte Carlo estimation of network lifetime distribution. We also present some simulation results.Keywords: Combinatorial spectrum, Monte Carlo, Networklifetime, Unreliable nodes and edges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18403529 Monte Carlo Simulation of the Transport Phenomena in Degenerate Hg0.8Cd0.2Te
Authors: N. Dahbi, M. Daoudi, A.Belghachi
Abstract:
The present work deals with the calculation of transport properties of Hg0.8Cd0.2Te (MCT) semiconductor in degenerate case. Due to their energy-band structure, this material becomes degenerate at moderate doping densities, which are around 1015 cm-3, so that the usual Maxwell-Boltzmann approximation is inaccurate in the determination of transport parameters. This problem is faced by using Fermi-Dirac (F-D) statistics, and the non-parabolic behavior of the bands may be approximated by the Kane model. The Monte Carlo (MC) simulation is used here to determinate transport parameters: drift velocity, mean energy and drift mobility versus electric field and the doped densities. The obtained results are in good agreement with those extracted from literature.Keywords: degeneracy case, Hg0.8Cd0.2Te semiconductor, Monte Carlo simulation, transport parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18273528 Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation
Authors: M. Habchi, S.M. Mesli, M. Kotbi
Abstract:
The Reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an energy constraint in addition to the commonly used constraints derived from experimental data. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques.
Keywords: RMC simulation, HRMC simulation, energy constraint, screened potential, glassy state, liquid state, partial distribution function, pair partial distribution function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14673527 Semi Classical Three-Valley Monte Carlo Simulation Analysis of Steady-State and Transient Electron Transport within Bulk Ga0.38In0.62P
Authors: N. Massoum, B. Bouazza, H. Tahir, C. Sayah, A. Guen Bouazza
Abstract:
to simulate the phenomenon of electronic transport in semiconductors, we try to adapt a numerical method, often and most frequently it’s that of Monte Carlo. In our work, we applied this method in the case of a ternary alloy semiconductor GaInP in its cubic form; The Calculations are made using a non-parabolic effective-mass energy band model. We consider a band of conduction to three valleys (ΓLX), major of the scattering mechanisms are taken into account in this modeling, as the interactions with the acoustic phonons (elastic collisions) and optics (inelastic collisions). The polar optical phonons cause anisotropic collisions, intra-valleys, very probable in the III-V semiconductors. Other optical phonons, no polar, allow transitions inter-valleys. Initially, we present the full results obtained by the simulation of Monte Carlo in GaInP in stationary regime. We consider thereafter the effects related to the application of an electric field varying according to time, we thus study the transient phenomenon which make their appearance in ternary material
Keywords: Monte Carlo simulation, steady-state electron transport, transient electron transport, alloy scattering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17693526 Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process
Authors: Amer M. Momani, Abdulaziz A. Ahmed
Abstract:
The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.Keywords: Analytic Hierarchy Process (AHP), Materialhandling equipment selection, Monte Carlo simulation, Multi-criteriadecision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31383525 A New Method to Estimate the Low Income Proportion: Monte Carlo Simulations
Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz
Abstract:
Estimation of a proportion has many applications in economics and social studies. A common application is the estimation of the low income proportion, which gives the proportion of people classified as poor into a population. In this paper, we present this poverty indicator and propose to use the logistic regression estimator for the problem of estimating the low income proportion. Various sampling designs are presented. Assuming a real data set obtained from the European Survey on Income and Living Conditions, Monte Carlo simulation studies are carried out to analyze the empirical performance of the logistic regression estimator under the various sampling designs considered in this paper. Results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the customary estimator under the various sampling designs considered in this paper. The stratified sampling design can also provide more accurate results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19403524 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment
Authors: Fares Innal, Yves Dutuit, Mourad Chebila
Abstract:
The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.
Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27793523 Reliability Evaluation of Composite Electric Power System Based On Latin Hypercube Sampling
Authors: R. Ashok Bakkiyaraj, N. Kumarappan
Abstract:
This paper investigates the suitability of Latin Hypercube sampling (LHS) for composite electric power system reliability analysis. Each sample generated in LHS is mapped into an equivalent system state and used for evaluating the annualized system and load point indices. DC loadflow based state evaluation model is solved for each sampled contingency state. The indices evaluated are loss of load probability, loss of load expectation, expected demand not served and expected energy not supplied. The application of the LHS is illustrated through case studies carried out using RBTS and IEEE-RTS test systems. Results obtained are compared with non-sequential Monte Carlo simulation and state enumeration analytical approaches. An error analysis is also carried out to check the LHS method’s ability to capture the distributions of the reliability indices. It is found that LHS approach estimates indices nearer to actual value and gives tighter bounds of indices than non-sequential Monte Carlo simulation.
Keywords: Composite power system, Latin Hypercube sampling, Monte Carlo simulation, Reliability evaluation, Variance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31093522 A Dose Distribution Approach Using Monte Carlo Simulation in Dosimetric Accuracy Calculation for Treating the Lung Tumor
Authors: Md Abdullah Al Mashud, M. Tariquzzaman, M. Jahangir Alam, Tapan Kumar Godder, M. Mahbubur Rahman
Abstract:
This paper presents a Monte Carlo (MC) method-based dose distributions on lung tumor for 6 MV photon beam to improve the dosimetric accuracy for cancer treatment. The polystyrene which is tissue equivalent material to the lung tumor density is used in this research. In the empirical calculations, TRS-398 formalism of IAEA has been used, and the setup was made according to the ICRU recommendations. The research outcomes were compared with the state-of-the-art experimental results. From the experimental results, it is observed that the proposed based approach provides more accurate results and improves the accuracy than the existing approaches. The average %variation between measured and TPS simulated values was obtained 1.337±0.531, which shows a substantial improvement comparing with the state-of-the-art technology.
Keywords: Lung tumor, Monte Carlo, polystyrene, elekta synergy, Monaco Planning System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12423521 The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data
Authors: Edlira Donefski, Tina Donefski, Lorenc Ekonomi
Abstract:
Edgeworth Approximation, Bootstrap and Monte Carlo Simulations have a considerable impact on the achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that have the components of a Cash-Flow of one of the most successful businesses in the world, as the financial activity, operational activity and investing activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case we have created a Vector Autoregression model, and after that we have generated the impulse responses in the terms of Asymptotic Analysis (Edgeworth Approximation), Monte Carlo Simulations and Residual Bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied, that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.
Keywords: Autoregression, Bootstrap, Edgeworth Expansion, Monte Carlo Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5953520 The Effect of Nonnormality on CB-SEM and PLS-SEM Path Estimates
Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim
Abstract:
The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are nonnormal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and nonnormality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under nonnormality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.
Keywords: CB-SEM, Monte Carlo simulation, Normality conditions, Nonnormality, PLS-SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51393519 Combinatorial Approach to Reliability Evaluation of Network with Unreliable Nodes and Unreliable Edges
Authors: Y. Shpungin
Abstract:
Estimating the reliability of a computer network has been a subject of great interest. It is a well known fact that this problem is NP-hard. In this paper we present a very efficient combinatorial approach for Monte Carlo reliability estimation of a network with unreliable nodes and unreliable edges. Its core is the computation of some network combinatorial invariants. These invariants, once computed, directly provide pure and simple framework for computation of network reliability. As a specific case of this approach we obtain tight lower and upper bounds for distributed network reliability (the so called residual connectedness reliability). We also present some simulation results.
Keywords: Combinatorial invariants, Monte Carlo simulation, reliability, unreliable nodes and unreliable edges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15933518 Constrained Particle Swarm Optimization of Supply Chains
Authors: András Király, Tamás Varga, János Abonyi
Abstract:
Since supply chains highly impact the financial performance of companies, it is important to optimize and analyze their Key Performance Indicators (KPI). The synergistic combination of Particle Swarm Optimization (PSO) and Monte Carlo simulation is applied to determine the optimal reorder point of warehouses in supply chains. The goal of the optimization is the minimization of the objective function calculated as the linear combination of holding and order costs. The required values of service levels of the warehouses represent non-linear constraints in the PSO. The results illustrate that the developed stochastic simulator and optimization tool is flexible enough to handle complex situations.Keywords: stochastic processes, empirical distributions, Monte Carlo simulation, PSO, supply chain management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20753517 The Investigations of Water-ethanol Mixture by Monte Carlo Method
Authors: Atamas N. A., Atamas A. A.
Abstract:
Energetic and structural results for ethanol-water mixtures as a function of the mole fraction were calculated using Monte Carlo methodology. Energy partitioning results obtained for equimolar water-ethanol mixture and ether organic liquids are compared. It has been shown that at xet=0.22 the RDFs for waterethanol and ethanol-ethanol interactions indicated strong hydrophobic interactions between ethanol molecules and the local structure of solution is less structured at this concentration as at ether ones. Results obtained for ethanol-water mixture as a function of concentration are in good agreement with the experimental data.
Keywords: Ethanol, molecular liquids, Monte Carlo, water, thermodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22433516 Monte Carlo Simulation of Copolymer Heterogeneity in Atom Transfer Radical Copolymerization of Styrene and N-Butyl Acrylate
Authors: Mohammad Najafi, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi, Vahid Haddadi-Asl
Abstract:
A high-performance Monte Carlo simulation, which simultaneously takes diffusion-controlled and chain-length-dependent bimolecular termination reactions into account, is developed to simulate atom transfer radical copolymerization of styrene and nbutyl acrylate. As expected, increasing initial feed fraction of styrene raises the fraction of styrene-styrene dyads (fAA) and reduces that of n-butyl acrylate dyads (fBB). The trend of variation in randomness parameter (fAB) during the copolymerization also varies significantly. Also, there is a drift in copolymer heterogeneity and the highest drift occurs in the initial feeds containing lower percentages of styrene, i.e. 20% and 5%.Keywords: Atom Transfer Radical Copolymerization, MonteCarlo Simulation, Copolymer Heterogeneity, Styrene n-ButylAcrylate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16013515 Unit Root Tests Based On the Robust Estimator
Authors: Wararit Panichkitkosolkul
Abstract:
The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.
Keywords: Autoregressive, Ordinary least squares, Type I error, Power of the test, Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17883514 Estimating Shortest Circuit Path Length Complexity
Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake
Abstract:
When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13783513 Modeling the Transport of Charge Carriers in the Active Devices MESFET, Based of GaInP by the Monte Carlo Method
Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi
Abstract:
The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.
Keywords: Monte Carlo simulation, transient electron transport, MESFET device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16653512 A Novel Method Based on Monte Carlo for Simulation of Variable Resolution X-ray CT Scanner: Measurement of System Presampling MTF
Authors: H. Arabi, A.R. Kamali Asl
Abstract:
The purpose of this work is measurement of the system presampling MTF of a variable resolution x-ray (VRX) CT scanner. In this paper, we used the parameters of an actual VRX CT scanner for simulation and study of effect of different focal spot sizes on system presampling MTF by Monte Carlo method (GATE simulation software). Focal spot size of 0.6 mm limited the spatial resolution of the system to 5.5 cy/mm at incident angles of below 17º for cell#1. By focal spot size of 0.3 mm the spatial resolution increased up to 11 cy/mm and the limiting effect of focal spot size appeared at incident angles of below 9º. The focal spot size of 0.3 mm could improve the spatial resolution to some extent but because of magnification non-uniformity, there is a 10 cy/mm difference between spatial resolution of cell#1 and cell#256. The focal spot size of 0.1 mm acted as an ideal point source for this system. The spatial resolution increased to more than 35 cy/mm and at all incident angles the spatial resolution was a function of incident angle. By the way focal spot size of 0.1 mm minimized the effect of magnification nonuniformity.Keywords: Focal spot, Spatial resolution, Monte Carlosimulation, Variable resolution x-ray (VRX) CT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15293511 Statistical Evaluation of Nonlinear Distortion using the Multi-Canonical Monte Carlo Method and the Split Step Fourier Method
Authors: Ioannis Neokosmidis, Nikos Gkekas, Thomas Kamalakis, Thomas Sphicopoulos
Abstract:
In high powered dense wavelength division multiplexed (WDM) systems with low chromatic dispersion, four-wave mixing (FWM) can prove to be a major source of noise. The MultiCanonical Monte Carlo Method (MCMC) and the Split Step Fourier Method (SSFM) are combined to accurately evaluate the probability density function of the decision variable of a receiver, limited by FWM. The combination of the two methods leads to more accurate results, and offers the possibility of adding other optical noises such as the Amplified Spontaneous Emission (ASE) noise.Keywords: Monte Carlo, Nonlinear optics, optical crosstalk, Wavelength-division Multiplexing (WDM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16923510 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models
Authors: Viriyavudh Sim, WooYoung Jung
Abstract:
Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.
Keywords: Wind fragility, glass window, high rise apartment, Monte Carlo Simulation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12213509 Optimal Maintenance and Improvement Policies in Water Distribution System: Markov Decision Process Approach
Authors: Jong Woo Kim, Go Bong Choi, Sang Hwan Son, Dae Shik Kim, Jung Chul Suh, Jong Min Lee
Abstract:
The Markov decision process (MDP) based methodology is implemented in order to establish the optimal schedule which minimizes the cost. Formulation of MDP problem is presented using the information about the current state of pipe, improvement cost, failure cost and pipe deterioration model. The objective function and detailed algorithm of dynamic programming (DP) are modified due to the difficulty of implementing the conventional DP approaches. The optimal schedule derived from suggested model is compared to several policies via Monte Carlo simulation. Validity of the solution and improvement in computational time are proved.
Keywords: Markov decision processes, Dynamic Programming, Monte Carlo simulation, Periodic replacement, Weibull distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28173508 Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation
Authors: L. Mahdavian, M. Raouf
Abstract:
Three dimensional nanostructure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. Tin dioxide is the most used material for gas sensing because its three-dimensional nanostructures and properties are related to the large surface exposed to gas adsorption. We propose the use of branch SnO2 nanowhiskers in interaction with ethanol. All Sn atoms are symmetric. The total energy, potential energy and Kinetic energy calculated for interaction between SnO2 and ethanol in different distances and temperatures. The calculations achieved by methods of Langevin Dynamic and Mont Carlo simulation. The total energy increased with addition ethanol molecules and temperature so interactions between them are endothermic.
Keywords: Tin dioxide, nanowhisker, Ethanol, Langevin Dynamic and Mont Carlo Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11703507 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM
Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen
Abstract:
Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.Keywords: Fatigue damage, FORM, monopile, monte carlo simulation, reliability, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11893506 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame
Authors: Seong Do Kim, Woo Young Jung
Abstract:
Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.
Keywords: Aluminum frame soundproofing wall, Monte Carlo Simulation, numerical simulation, wind fragility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8883505 BER Performance of NLOS Underwater Wireless Optical Communication with Multiple Scattering
Authors: V. K. Jagadeesh, K. V. Naveen, P. Muthuchidambaranathan
Abstract:
Recently, there is a lot of interest in the field of under water optical wireless communication for short range because of its high bandwidth. But in most of the previous works line of sight propagation or single scattering of photons only considered. In practical case this is not applicable because of beam blockage in underwater and multiple scattering also occurred during the photons propagation through water. In this paper we consider a non-line of sight underwater wireless optical communication system with multiple scattering and examine the performance of the system using monte carlo simulation. The distribution scattering angle of photons are modeled by Henyey-Greenstein method. The average bit error rate is calculated using on-off keying modulation for different water types.
Keywords: Non line of sight under Water optical wireless communication, Henyey-Greenstein model, Multiple scattering, Monte-Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28343504 Screened Potential in a Reverse Monte Carlo (RMC) Simulation
Authors: M. Habchi, S. M. Mesli, M. Kotbi
Abstract:
A structural study of an aqueous electrolyte whose experimental results are available. It is a solution of LiCl-6H2O type at glassy state (120K) contrasted with pure water at room temperature by means of Partial Distribution Functions (PDF) issue from neutron scattering technique. Based on these partial functions, the Reverse Monte Carlo method (RMC) computes radial and angular correlation functions which allow exploring a number of structural features of the system. The obtained curves include some artifacts. To remedy this, we propose to introduce a screened potential as an additional constraint. Obtained results show a good matching between experimental and computed functions and a significant improvement in PDFs curves with potential constraint. It suggests an efficient fit of pair distribution functions curves.Keywords: RMC simulation; Screened potential; partial and pair distribution functions; glassy and liquid state
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526