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Abstract—The Markov decision process (MDP) based
methodology is implemented in order to establish the optimal
schedule which minimizes the cost. Formulation of MDP problem
is presented using the information about the current state of pipe,
improvement cost, failure cost and pipe deterioration model. The
objective function and detailed algorithm of dynamic programming
(DP) are modified due to the difficulty of implementing the
conventional DP approaches. The optimal schedule derived from
suggested model is compared to several policies via Monte
Carlo simulation. Validity of the solution and improvement in
computational time are proved.
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I. INTRODUCTION

VARIOUS kinds of policies for appropriate combination
of maintenance and improvement on water distribution

system are implemented, and heuristic policy or myopic policy
is the most widely used policy among them. The former is to
improve the pipe every 15-30 years, and the latter is to improve
the pipe when failure occurs. It is trivial that both policies are
very different from an effective policy. The objective of this
research is to suggest a systematic decision-making framework
for deriving an optimal policy that minimizes the total cost and
reflects the overall circumstance of pipe.
A mathematical model explaining the deterioration of water
pipe is necessary since the direct investigation of a water
distribution system is time-consuming and costly. A statistical
approach has been made to explain the failure risk of the pipe
in [2], which is called survival data analysis. A proportional
hazards model is used in the early stage of deterioration, while
a Poisson model is used in the late stages. [3] applied survival
analysis for the number of real data.
Markov model is one of the most widely used models to
describe the deterioration model. It classifies the pipe into
finite state with some criteria such as the number of failures
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([4]) or current performance of pipe ([5]). Once the state
classification criteria has been declared, the state transition
probability can be obtained in two ways. One is to combine
survival analysis with Markov model ([4] and [6]). It is an
extended version of survival analysis. While survival analysis
only considers two states (failure or not), Markov model makes
a relationship between multiple states. The other method is
to use a statistical method directly without using survival
analysis([7], [8], [9], [10], [5], [11], and [12]). Transition
probabilities are calculated by regression methods.
The deterioration model explained above is then combined
with the cost model to formulate the objective function.
Objective function is expressed to minimize the total
expectation cost within the decision horizon or to minimize
the failure rate. Multiobjective optimization is also considered
in [13] and [14].
Various kinds of formulation have been suggested and a
corresponding optimal poilcy have been withdrawn. [15] used
threshold break rate which concerns the failure history of a
single pipe. [16] added the analysis of hydraulic pressure in
order to expand the single pipe problem into the pipe network
system. Both researches use the exponential failure rate which
is the most simple form of deterioration models.
More complex optimization strategies have also been studied.
Linear programming based optimization strategies have been
suggested in [4] and [9]. A basic concept of implementing
Markov decision process to the scheduling problem for
infrastructure is suggested by [17]. Monte Carlo simulation is
also used to solve the optimization problem by [1] and [18].
Those formulations are intuitive and convenient to get a
solution, but the computational burden grows exponentially
with the problem size. To overcome the problem, this work
proposes a novel dynamic programming formulation to solve
the Markov decision process. Monte Carlo simulations are
used to show the validity of the result and reduction in
computational time.

II. MARKOV DECISION PROCESS(MDP) FOR OPTIMAL
SCHEDULING

A. Fundamentals of Markov Decision Process

Consider a single water pipeline in the water distribution
system. Decision maker should decide whether to maintain the
pipe or not at each decision epoch based on the information
of system. Markov decision process is an appropriate
decision-making method for a system whose system follows

Monte Carlo simulation, Periodic replacement, Weibull distribution.
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Present state Next state

Action Action

Cost Cost

State transition

Present decision epoch Next decision epoch

Fig. 1. Illustration of sequential decision problem ([19])

a Markov property. The fundamentals are treated in [19] with
considerable detail.
At each time step, the state of system is observed or
calculated and the decision maker may choose any action
which accompanies cost. At the next time step, the process
moves into a new state and a corresponding cost occurs. The
probability of the process moves into its new state is influenced
by the chosen action. Given the state and action, they are
conditionally independent of all previous states and actions;
in other words, the state transitions of a Markov decision
process possess the Markov property. The objective of Markov
decision process is to find the sequence of action, which is
called optimal policy, to minimize the total cost. Fig. 1 is the
brief illustration of Markov decision process. The following
data are given:
T = {1, . . . , N} is a set of decision epoch.
S = {1, . . . , |S|} is a finite set of states; state 1 denotes good,
brand-new pipe and state n denotes failure.
A = {1, . . . , |A|} is a finite set of actions; 1: maintenance, 2:
rehabilitation, 3: replacement.
Ct(st, at) is a cost function at decision epoch t.
pt(st+1|st, at) is a transition probability at time t that gives
the probability; When the state is in st and action at is
taken, then the next state will be in st+1 with probability of
pt(st+1|st, at).
Xt = [x1, x2, . . . , x|S|] is a state distribution at decision epoch
t.
γ is a discount factor; future costs are discounted when
converted into present value.

B. Deterioration and Action Matrix

It is convenient to express the transition probability as a
matrix form. A Markov transition probability matrix Pt(at) is
a matrix whose element of ith row and jth column denotes the
transition probability pt(st+1 = j|st = i, at). It is assumed
that the process can move from state i to state j only if
j � i. And the pipeline can deteriorate only one state at
a time ([20]). Decision maker can employ three kinds of
action, which means |A| = 3, at each time step; maintenance,
rehabilitation, and replacement. Transition probability matrix
pt(st+1 = j|st = i, at) can be decomposed to a deterioration
matrix Dt and an action matrix Rat

. Action matrices have the

same dimension with the transition matrix. Replacement and
rehabilitation transfer the inferior states to state 1. When the
improvement performance is r, corresponding action matrix is
given by

M(r) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
r 1− r 0 0 0
r 0 1− r 0 0
r 0 0 1− r 0
r 0 0 0 1− r

⎤
⎥⎥⎥⎥⎦

(1)

Maintenance does not alter the state distribution and its matrix
is R1 = M(0). Assume that replacement recover the pipe
perfectly and rehabilitation recover the pipe 70 percent, thus
R2 = M(0.7), R3 = M(1).
State distribution at the next time step can be calculated by
the left multiplication of action matrix and transition matrix
to state distribution at current time step. Generally, state
distribution at time τ , Xτ can be obtained by

Xτ = X1

τ−1∏
t=1

Pt(at) = X1

τ−1∏
t=1

RatDt (2)

III. DETERIORATION MODEL OF WATER PIPE

A. Deterioration Matrix Evaluation Using Waiting Time

The pipe would deteriorate naturally if no improvement had
been employed. Deterioration matrix Dt can be evaluated by
the deterioration model of water pipe. The basic idea of the
deterioration model is to estimate a survival function or a
hazard function for a water pipe. Estimating those functions is
called survival analysis which has been widely studied. Models
developed by Weibull are the most prominent, but they only
considers the two state system (|S| = 2); failure or not. [6]
generalizes the deterioration model to n state variables, and
provides the methods to evaluate the deterioration matrix.
Let {T1, T2, . . . , T|S|−1} be random variables representing the
waiting time in states {1, 2, . . . , |S|−1}. For example, it takes
Ti for the process to go from state i to i+ 1.
When we define the random variable Ti→k as the sum of
waiting times in states {i, i + 1, . . . , k − 1}, we can obtain
the cumulative waiting time between states i and k. In
general, summation of two or more random variables can
be calculated analytically by convolution integral. Probability
density function (PDF), survival function (SF) of Ti→k are
denoted as fi→k(Ti→k), Si→k(Ti→k). Then the transition
probability of state i to state i + 1 is the generalization of
hazard function which can be expressed as follows.

Pr[st+1 = i+ 1|st = i] = pt(i+ 1|i, 1)
=

f1→i(t)

S1→i(t)− S1→i−1(t)
(3)

for all i = {1, 2, . . . , |S| − 1}

Once the PDF and SF of waiting time Ti(t) are established,
every element of the deterioration matrix Dt can be calculated.
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B. Weibull Distribution of Waiting Time

The waiting time Ti of state i follows the Weibull
probability distribution. Weibull model is the special case of
the proportional hazards model whose physical interpretation
is explained by [21]. Weibull model has two parameters and
takes the following.

SF : Si(t) = Pr[Ti ≥ t] = exp[−(λit)
βi ]

PDF : fi(t) = λiβi(λit)
βi−1 exp[−(λit)

βi ] (4)

Parameters λi and βi can be calculated by regression using the
survival history of water distribution system of target region
(e.g. x% probability of being in state i more than t years).
The criteria of classifying the state of water pipe has been
suggested by many researchers ([5], [10]) and municipal
government. The data on which the time a pipe takes to shift
from one state to other without any action employed would
be recorded. Decision maker uses those historical data to find
the parameters of Weibull model and evaluate the deterioration
matrix Dt, t ∈ T .

IV. DYNAMIC PROGRAMMING

A. Fundamentals of Dynamic Programming and Bellman
Equation

Dynamic programming algorithm is implemented to solve
the Markov decision process. Dynamic programming is the
method for solving the complex optimization problems by
breaking down the big system into smaller subproblems.
We need to get solutions of the subproblems, then take
the solutions into account to reach an overall solution. This
bottom-up approach method reduces the repeated calculation
and complexity of a large-scale optimization problem.
The goal is to find an optimal policy (action) that minimizes
the total cost over the whole period of the decision process.
The optimal policy π∗ = (a1, a2, . . . , aN ) is the sequence
that minimizes the total cost and can be found by solving the
following objective function.

Vπ∗ = min
π

E[

N∑
t=1

γtCt(st, at)] (5)

Define the value function at the kth time-step as

Vk(sk) = min
ak,ak+1,...,aN

E[
N∑
t=k

γt−kCt(st, at)|] (6)

Then we can find the optimal policy by working backwards
from N, which is called Bellman equation.

Vk(sk) = (7)

min
ak∈A

(Ck(sk, ak) + γ
∑

s′∈S

P (st+1 = s
′ |st, at)Vk+1(s

′
))

Let vt the column vector with ith element be Vt(st = i),
and ct(at) the column vector with ith element be Ct(st, at).
Then the standard Bellman equation can be expressed by a
vector-matrix form.

vk = min
ak∈A

(ck(ak) + γvk+1Pk+1(ak+1)) (8)

B. Modified DP Algorithm Considering the Specific Condition
of Water Pipe

According to equation (3), deterioration matrices are
time-varying. So proper matrix should be substituted to
Bellman equation. Consider when replacement action takes
place at decision epoch k. ”Replacement” means replacing
the deteriorated or aged pipe into the new pipe. Deterioration
rate is then initialized at the next decision epoch k + 1;
Dk+1 = D1. In order to choose the deterioration matrix at
decision epoch k, decision maker should know all information
about policy employed before (a1, a2, . . . , ak−1), or just know
about when the pipe was replaced recently. However, it is
impossible to know that information since the optimal policy
is evaluated from aN to a1, in a backward manner. To avoid the
algorithmic difficulty, replacement action should be separated
from dynamic programming.
Based on the idea that replacement initialize the time index
of deterioration matrix, this problem also can be considered
as a periodic problem. Let the replacement period τ , then the
pipe would be replaced at decision epoch {τ, 2τ, . . . , ⌊N

τ

⌋
τ}.

During the decision epoch within the first period Tτ =
{1, 2, . . . , τ − 1}, define the objective function V τ

η .

V τ
η = minη E[

∑|Tτ |
t=1 γ

t−1Ct(st, at)] (9)
η = {a1, a2, . . . , a|Tτ |} ai ∈ A \ {3}

Optimal policy η∗ minimizes the total cost within the first
period, which can be found by using backward dynamic
programming. The last period of the decision horizon is
TF = {⌊N

τ

⌋
τ + 1,

⌊
N
τ

⌋
τ + 2, . . . , N} and a corresponding

objective function is defined as follows.

V F
ζ = minζ E[

∑|TF |
t=1 γt−1Ct(st, at)] (10)

ζ = {a1, a2, . . . , a|TF |}, ai ∈ A \ {3}
Due to the periodic property of the problem, optimal policy
π∗ is expressed as follows.

π∗ = {η∗, 3, η∗, 3, . . . , η∗, 3, ζ∗} (11)

The cost incurred during the kth period is equal to γk−1V τ
η

when discount factor γ is taken into account. The total cost
of whole decision horizon is evaluated as follows.

Vπ = γ�N
τ �V F

ζ +

�N
τ �∑

k=1

γk−1V τ
η (12)

The object is to find the replacement period τ∗ which
minimizes the total cost Vπ , where the minimum cost is V ∗

π .
The scheme explained above is illustrated in Fig. 2. And Fig. 3
is the flow diagram of the proposed algorithm of decision
process. Denote the MDP problem with decision horizon N as
G(N). Then the optimal policy of G(τ) is solved by dynamic
programming explained in Section IV.A. The total cost of
G(N) can be calculated by following the procedure explained
in Section IV.B. The optimal replacement period τ∗ is found
exhaustively; solve the optimization problem by searching for
all possible candidates.
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Decision epoch

repair repair repairrepair

Fig. 2. Illustration of periodic subproblem

Solve via 

dynamic 

programming

Reduce to 

subproblem

Construct the 

op�mal policy for 

Calculate the total 

cost of using 

Find minimizes 

via exhaus�ve 

search

Fig. 3. Modified DP algorithm flow diagram

V. SIMULATION RESULTS

A. Example Data

An illustrative example case is solved to validate the
proposed algorithm to find the minimum cost. Given that
there are 5 states (|S| = 5), and the decision horizon is 100
years (t = 100). Parameters of Weibull distribution model
are arbitrarily chosen which makes the pipe deteriorate for
the decision horizon. In this example, the parameter data of
[6] are used. The rehabilitation performance is set to be 70
percent. The discount factor γ is 0.99. The opportunity cost
of failure, rehabilitation and replacement are assumed to be
200, 80, 100 (no unit).

B. Optimal Policy from Proposed Algorithm

The proposed decision framework with the example data of
Section V.A was implemented in MATLAB environment to
verify the concept. Calculated optimal policy has the form of
5×100 matrix; ith row is the 100 years plan of the pipe whose
initial state is estimated to be i. Fig. 4 shows the variation of
the total cost of P (N) as subproblem P (τ) changes when the
initial state is given. All graphs have global minimum point
and it is clear that those points are the optimal replacement
period of a corresponding initial state.

TABLE I
OPTIMAL REPLACEMENT PERIOD

Initial state State1 State2 State3 State4 State5
τ∗(year) 53 53 54 80 53

V ∗ 94.04 97.40 234.88 256.06 476.52

Table. I shows the optimal replacement period and minimum
total cost of an example case. Various constraints can be added
on this algorithm. For example, when the upper bound of the
replacement period is set to be 50 years, then τ∗s are altered
like Table. II.
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Fig. 4. Total cost of each subproblem

C. Comparison with Other Policies via Monte Carlo(MC)
Simulation

Monte Carlo simulation is widely used to solve the
optimization problem of sequential stochastic process. This
algorithm generates a set of random samples to obtain
numerical results and observe a stochastic dynamics. Total
cost and state variation would be simulated at each policy.
And the global optimal policy would be found by enumerating
the whole possibility. However, the number of cases in
this problem is |A|T×|S|, which is too huge to enumerate.
Nevertheless, it is very useful to observe the state variation
over the decision horizon and the incurred cost when the action
set is given.
To prove the validity and speed of the proposed algorithm,
several heuristic policies and optimal policies in Section V.B.
are compared by Monte Carlo simulation. The whole map of
state transition probability pt(st+1|st, at) is revealed when the
action set is given. Monte Carlo simulation creates the path
regarding the revealed map from decision epoch 1 through
100 by using uniformly distributed random numbers. Each
experiment is repeated 5000 times to reduce the effect of
randomness.
Monte Carlo simulation results of several widely implemented
policies are compared to the policy obtained by proposed
algorithm and shown in Table. III. Heuristics 15 and 30 replace

TABLE II
OPTIMAL REPLACEMENT PERIOD WITH CONSTRAINT

Initial state State1 State2 State3 State4 State5
τ∗(year) 39 38 40 21 50

V ∗ 104.90 107.63 240.59 263.60 525.95

TABLE III
POLICY COMPARISON

Initial state State1 State2 State3 State4 State5
Proposed 94.04 97.40 234.88 256.06 476.52

Heuristic15 369.54 369.54 369.54 369.54 469.54
Heuristic30 174.50 177.92 460.70 687.80 275.22

Myopic 642.40 648.70 946.30 1070.7 730.90
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the pipe every 15 and 30 years, respectively, regardless of its
initial state. Myopic policy is to replace the pipe when failure
occurs. Rehabilitation action is not considered. Simulation
results show that the proposed algorithm leads to the smallest
value on all initial states.

TABLE IV
COMPUTATIONAL TIME COMPARISON

computational time(s)
MDP 1.03
MC 27.5

The strength of proposed algorithm would be emphasized
when the computational times are compared. Table. IV shows
that the computational time of proposed algorithm is about
27 times faster than Monte Carlo simulation. This time ratio
is estimated when the policy is given. When it comes to
the problem of finding the global optimal policy, the ratio
increases exponentially because it enumerates all feasible
action set. The order of feasible action set is |A|T×|S|, which
causes the curse of dimensionality.

VI. CONCLUSION

Decision maker needs the pipe characteristics such as
geometry, pH, soil type, weather, population, etc. Using those
raw data, MDP can be formulated by following the procedure
in Section II and III.
Due to the non-homogeneous property of transition probability
matrix, conventional DP algorithm cannot be implemented.
Hence, a modified method is proposed to get a global optimal
policy; tear the problem into small-size subproblem and apply
DP of each part, and reassemble them.
Calculated optimal policy is compared with several simple
policies (heuristic policy, myopic policy) using Monte Carlo
simulation in order to prove the validity and performance of
the proposed algorithm. As a result, the proposed algorithm
not only achieves the global optimal policy, but also reduces
the computational time greatly.
Moreover, local-specialty would be one of the major difference
compared to existing policies. It considers the effect of current
state, property, cost, decision horizon comprehensively while
heuristic and myopic policies do not. So the policy can be
altered flexibly on frequently varying circumstance. By regular
inspection, properties of pipe are updated and optimal policy
can be varied regularly.
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