Modeling the Transport of Charge Carriers in the Active Devices MESFET, Based of GaInP by the Monte Carlo Method
Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi
Abstract:
The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.
Keywords: Monte Carlo simulation, transient electron transport, MESFET device.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099336
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665References:
[1] Kittel, Physique de l’etat solide, Ed. Dunod Université (1983) 287,325
[2] Gerald Bastard, Wave mechanics applied to semiconductor heterostructures, Les editions de physique, Paris, (1988).
[3] CAPPY. A, Propriétés physiques et performances potentielles des composants submicroniques à effet de champ : structures conventionnelles et à gaz d’électrons, Thèse d’état, Université de Lille France. (1986).
[4] F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).
[5] KITTEL C., Physique de l’état solide - 7ème édition, Dunod, 1998.
[6] A. ElFatimy. Détection et Emission Terahertz par les ondes de plasma dans des transistors HEMT à base d’hétérostructures GaN/AlGaN et InGaAs/InAlAs, Montepelier. Juin 2007
[7] M. Elmoufakkir, Etude des propriétés optiques dans l'infrarouge lointain des hétérostructures à base de semi conducteurs Gaas/ Algaas modèle de la fonction diélectrique. Université Sidi Mohamed Ben Abdellah faculté des sciences Dhar El Mehraz Fès Maroc 2012
[8] Peter Y.YU, Manuel Cardona. Fundamentals of semiconductors Physics and materials properties. Springer (2001).
[9] Gerald Bastard, Wave mechanics applied to semiconductor heterostructures, Les éditions de physique, paris, (1988).
[10] Henri Alloul, physique des électrons dans les solides, de l’ecole polytechnique – Septembre 2007
[11] Dargys A. and J. Kundrotas Handbook on Physical Properties of Ge, Si, GaAs and InP, Vilnius, Science and Encyclopedia Publishers, 1994
[12] BRU, C., Simulation par Monte Carlo Doctorat d'Etat, Orsay (1988)
[13] S. M. Sze, « physic of semiconductor devices », Ed. INC. J.Willy et Sons, New York 1981.
[14] P. Y. Yu et M. Cardona. Fundamentals of semiconductors Physics and materials properties. Graduate Texts in Physics. Springer, 2010. (Cité en pages 24, 25, 33 et 161.)
[15] Effets de la compensation du dopage sur les propriétés électriques du silicium et sur les performances photovoltaïques des cellules à base de silicium solaire purifié par voie métallurgique N° d’ordre 2011ISAL0111 Année 2011
[16] B. L. Altshuler, A.G. Aronov, and D.E. Khmelnitsky. Solid State Comm., 39:619, 1981.
[17] K. Rim. 32 nm and beyond transistor enhancements Mobility enhancement. 2007. IEDM short course
[18] Guidoni, L., C. Triché, P. Verkerk & G. Grynberg (1997), « Quasiperiodic Optical Lattices », in Phys. Rev. Lett. 79 (18), pp. 3363– 3366.
[19] N.W. Ashcroft and N.D. Mermin. Solid States Physics. 1976.
[20] M. Lundstrom. Fundamentals of carrier transport. 2000.
[21] J.M. Ziman. Principles of the Theory of solids. 1972.
[22] HESTO, P.t Doctorat d'Etat, Orsay (1984).