Lattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Lattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow

Authors: Thomas Fiedler, Irina V. Belova, Graeme E. Murch

Abstract:

Lattice Monte Carlo methods are an excellent choice for the simulation of non-linear thermal diffusion problems. In this paper, and for the first time, Lattice Monte Carlo analysis is performed on thermal diffusion combined with convective heat transfer. Laminar flow of water modeled as an incompressible fluid inside a copper pipe with a constant surface temperature is considered. For the simulation of thermal conduction, the temperature dependence of the thermal conductivity of the water is accounted for. Using the novel Lattice Monte Carlo approach, temperature distributions and energy fluxes are obtained.

Keywords: Coupled Analysis, Laminar Flow, Lattice MonteCarlo, Thermal Diffusion

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078281

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999

References:


[1] G. E. Murch, "Simulation of Diffusion Kinetics with the Monte Carlo Method" in Diffusion in Crystalline Solids, G. E. Murch, A.S. Nowick, Eds, Orlando: Academic Press, 1984, pp. 379 - 427.
[2] Y. Mishin, I. V. Belova, and G. E. Murch, "Atomistic Modelling of Diffusion in the TiAl Compound" Defect Diffus. Forum, vol. 237-240, pp. 271 - 276, 2005.
[3] I. V. Belova and G. E. Murch, "Bridging Different Length and Time Scales in Diffusion Problems Using a Lattice Monte Carlo Methods" Sol. St. Phen., vol. 129, pp. 1 - 10, 2007.
[4] I. V. Belova, G. E. Murch, N. Muthubandara, and A. Öchsner, "Analysis of Oxygen Segregation at Metal-Oxide Interfaces Using a New Lattice Monte Carlo Method" Sol. St. Phen., vol. 129, pp. 111 - 118, 2007.
[5] I. V. Belova, G. E. Murch, T. Fiedler, and A. Öchsner, "Lattice-based walks and the Monte Carlo method for addressing mass, thermal and elasticity problems" Defect Diffus. Forum, vol. 283-286, pp. 13 - 23, 2009.
[6] I. V. Belova, G. E. Murch, T. Fiedler, and A. Öchsner, Diffusion Fundamentals, vol. 4, pp. 15.1-15.23, 2007. On-line.
[7] T. Fiedler, A. Öchsner, N. Muthubandara, I. V. Belova, G. E. Murch, "Calculation of the Effective Thermal Conductivity in Composites Using Finite Element and Monte Carlo Methods" Mater. Sci. Forum, vol. 553, pp. 51 - 56, 2007.
[8] T. Fiedler, A. Öchsner, I. V. Belova, and G. E. Murch, "Calculations of the effective thermal conductivity in a model of syntactic metallic hollow sphere structures using a Lattice Monte Carlo method" Defect Diffus. Forum, vol. 273-276, pp. 216 - 221, 2008.
[9] I. V. Belova and G. E. Murch, "Thermal Properties of Composite materials and Porous Media: Lattice-Based Monte Carlo Approaches" in Cellular and Porous Materials. Thermal Properties, Simulation and Prediction, A. Öchsner, G. E. Murch, J. S. de Lemos, Eds Weinheim: Wiley VCH, 2008, pp. 73 - 95.
[10] T. Fiedler, I. V. Belova, A. Öchsner, and G. E. Murch, "Non-linear calculations of transient thermal conduction in composite materials" Comp. Mater. Sci., vol. 45, pp. 434 - 438, 2009.
[11] T. Fiedler, I. V. Belova, G. E. Murch, "A Lattice Monte Carlo analysis on coupled reaction and mass diffusion" Comp. Mater. Sci., accepted for publication.
[12] C. O. Bennett and J. E. Myers, Momentum, Heat, and Mass Transfer, New York: McGraw-Hill Book Company, 1982.
[13] C. Y. Ho, R. W. Powell, and P. E. Liley, "Thermal Conductivity of the Elements" J. Phys. Chem. Ref. Data, vol. 1, pp. 279-442, 1972.
[14] G. K. White and S.J. Collocott, "Heat Capacity of Reference Materials" J. Phys. Chem. Ref. Data, vol. 13, no 4, pp. 1251-1257, 1984.
[15] F. L. Levy, "The thermal conductivity of commercial brines and seawater in the freezing range", Int. J. Refrig., vol. 5, pp. 155-159, 1982.
[16] D. R. Lide, CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 1998.