Unit Root Tests Based On the Robust Estimator
Authors: Wararit Panichkitkosolkul
Abstract:
The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.
Keywords: Autoregressive, Ordinary least squares, Type I error, Power of the test, Monte Carlo simulation.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092074
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788References:
[1] J. D. Hamilton, Time series analysis. New Jersey: Princeton University Press, 1994.
[2] W. A. Fuller, Introduction to statistical time series. New York: John Wiley & Sons, 1996.
[3] D. A. Dickey and W. A. Fuller, "Distribution of estimators for autoregressive time series with a unit root,” J. Am. Statist. Assoc., vol. 74, pp. 427–431, 1979.
[4] D. A. Dickey and W. A. Fuller, "Likelihood ratio statistics for autoregressive time series with a unit root,” Econometrica, vol. 49, pp. 1057–1072, 1981.
[5] S. E. Said and D. A. Dickey, "Testing for unit root in autoregressive moving-average models with unknown order,” Biometrika, vol. 71, pp. 599–607, 1984.
[6] S. E. Said and D. A. Dickey, "Hypothesis testing in ARIMA(p,1,q) models,” J. Am. Statist. Assoc., vol. 80, pp. 369–374, 1985.
[7] P. C. B. Phillips, "Time series regression with a unit root,” Econometrica, vol. 55, pp. 277–301, 1987.
[8] P. C. B. Phillips and P. Perron, "Testing for a unit root in time series regression,” Biometrika, vol. 75, pp. 335–346, 1988.
[9] A. Hall, "Testing for a unit root in the presence of moving average errors,” Biometrika, vol. 76, pp. 49–56, 1989.
[10] Pantula, S.G. and A. Hall, "Testing for unit roots in autoregressive moving average models: An instrumental variable approach,” J. Econometrics, vol. 48, pp. 325–353, 1991.
[11] A. Lucas, "Unit root tests based on M estimators,” Econom. Theory, vol. 11, pp. 331–346, 1995.
[12] E. Paparoditis and D. N. Politis, "Bootstrapping unit root tests for autoregressive time series,” J. Am. Statist. Assoc., vol. 100, pp. 545–553, 2005.
[13] J. Y. Park, "Bootstrap unit root tests,” Econometrica, vol. 71, pp. 1845–1895, 2003.
[14] H. B. Mann and A. Wald, "On the statistical treatment of linear stochastic difference equations,” Econometrica, vol. 11, pp. 173–220, 1943.
[15] P. J. Brockwell and R. A. Davis, Time series: Theory and methods. New York, Springer, 1991.
[16] F. H. C. Marriott and J. A. Pope, "Bias in the estimation of autocorrelations,” Biometrika, vol. 41, pp. 390–402, 1954.
[17] P. Shaman and R. A. Stine, "The bias of autoregressive coefficient estimators,” J. Am. Statist. Assoc., vol. 83, pp. 842–848, 1988.
[18] P. Newbold and C. Agiakloglou, "Bias in the sample autocorrelations of fractional noise,” Biometrika, vol. 80, pp. 698–702, 1993.
[19] L. Denby and R. D. Martin, "Robust estimation of the first-order autoregressive parameter,” J. Am. Statist. Assoc., vol. 74, pp. 140–146, 1979.
[20] G. M. Gonzalez-Farias and D. A. Dickey, "An unconditional maximum likelihood test for a unit root,” 1992 Proceedings of the Business and Economic Statistics Section, American Statistical Association, pp. 139–143, 1992.
[21] H. J. Park and W. A. Fuller, "Alternative estimators and unit root tests for the autoregressive process,” J. Time Ser. Anal., vol. 16, pp. 415–429, 1995.
[22] D. W. Shin and B. S. So, "Unit root tests based on adaptive maximum likelihood estimation,” Econom. Theory, vol. 15, pp. 1–23, 1999.
[23] J. H. Guo, "Robust estimation for the coefficient of a first order autoregressive process,” Commun. Stat. Theory, vol. 29, pp. 55–66, 2000.
[24] R. Ihaka and R. Gentleman, "R: A language for data analysis and graphics,” J. Comp. Graph. Stat., vol. 5, pp. 299–314, 1996.
[25] J. V. Bradley, "Robustness?,” Br. J. Math. Stat. Psychol., vol. 31, pp. 144–152, 1978.