Monte Carlo Simulation of the Transport Phenomena in Degenerate Hg0.8Cd0.2Te
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Monte Carlo Simulation of the Transport Phenomena in Degenerate Hg0.8Cd0.2Te

Authors: N. Dahbi, M. Daoudi, A.Belghachi

Abstract:

The present work deals with the calculation of transport properties of Hg0.8Cd0.2Te (MCT) semiconductor in degenerate case. Due to their energy-band structure, this material becomes degenerate at moderate doping densities, which are around 1015 cm-3, so that the usual Maxwell-Boltzmann approximation is inaccurate in the determination of transport parameters. This problem is faced by using Fermi-Dirac (F-D) statistics, and the non-parabolic behavior of the bands may be approximated by the Kane model. The Monte Carlo (MC) simulation is used here to determinate transport parameters: drift velocity, mean energy and drift mobility versus electric field and the doped densities. The obtained results are in good agreement with those extracted from literature.

Keywords: degeneracy case, Hg0.8Cd0.2Te semiconductor, Monte Carlo simulation, transport parameters.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1055986

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825

References:


[1] S.D.Yoo, B.G.KO, G.S.Lee, J.G.Park, and K.D.Kwack, Opto- Electronics Rev. Vol.7, pp.339-345, 1999.
[2] C.Palermo, L.Varani, J.C.Vaissière, E.Starikov, P.Shiktorov, V.Gružinskis, and B.Azaïs, Solid-State Electronics, vol.53, pp. 70-78, 2009.
[3] Z.J.Quan, G.B.Chen, L.Z.Sun, Z.H.Ye, Z.F.Li, and W.Lu, Infrared Physics and Technology, vol. 50, pp. 1-8, 2007.
[4] Sudha Gupta, R.K.Bhan, and V.Dhar, Infrared Physics and Technology, vol. 51, pp. 259-262, 2008.
[5] Z.Djuric, Z.Jaksic, A.Vujanic, and M.Smiljanic, Infrared Phy.,vol. 34,pp. 601-605, 1993.
[6] X .A.Humet, F.S.Mestres, and J. Millan, J. Appl. Phys., vol.54, pp.2850- 2851, 1983.
[7] A.Dutta, P.S.Mallick, and Mukhopadhyay, Int.J.Electronics, vol. 84, pp. 203-214, 1998.
[8] M. H. Weiler, Semiconductor and Semimetals. , NewYork: ed. R.Willardson and R.K. Beer, 1981.
[9] C. Jacoboni, and L. Reggiani, Mod. Phys.Rev., vol. 55, pp. 645-705, 1983.
[10] M. Akarsu, and Ö. Özbas, Mathematical and Computional Applications, vol. 10, pp. 19-26, 2005.
[11] B.Gelmont, B.Lund, K.Kim, G.U.Jensen, M.Shur, and T.A.Fjeldly, J.Appl.Phys., vol.71, pp. 4977-4982,1992.
[12] C.Jacoboni, P.Lugli, The Monte Carlo Methods for Semiconductor Device Simulation. Wien: Springer-Verlag, 1989.
[13] G.Nimtz, R.Dornhaus, and K.H.Muller, Phys.Rev.B, vol. 10, pp. 3302- 3310, 1974.
[14] G.Masetti, M.Severi, S.Solmi, IEEE Trans. Electron Dev., vol. ED30, pp.764-769, 1983.