Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation

Authors: L. Mahdavian, M. Raouf

Abstract:

Three dimensional nanostructure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. Tin dioxide is the most used material for gas sensing because its three-dimensional nanostructures and properties are related to the large surface exposed to gas adsorption. We propose the use of branch SnO2 nanowhiskers in interaction with ethanol. All Sn atoms are symmetric. The total energy, potential energy and Kinetic energy calculated for interaction between SnO2 and ethanol in different distances and temperatures. The calculations achieved by methods of Langevin Dynamic and Mont Carlo simulation. The total energy increased with addition ethanol molecules and temperature so interactions between them are endothermic.

Keywords: Tin dioxide, nanowhisker, Ethanol, Langevin Dynamic and Mont Carlo Simulation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1082519

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126

References:


[1] (a) See, for example, Cunningham, D. A. H. Vogel, W. Kageyama, H. Tsubota, S. Haruta, M. J. Catal. 1 (1998) 177. (b) Vartuli, J. C. Schmitt, K. D. Kresge, C. T. Roth, W. J. Leonowicz, M. E. McCullen, S. B. Hellring, S. D. Beck, J. S. Schlenker, J. L. Olson, D. H. Sheppard, E. W. Chem. Mater. 6 (1994) 2317-2326. (c) Janicke, M. T. Landry, C. C. Christiansen, S. C. Kumar, D. Stucky, G. D. hmelka, B. F. J. Am. Chem. Soc.120 (1998) 6940.
[2] Moseley, P. T. Solid State Gas Sensors (Review Article); Meas. Sci. Technol. 8 (1997) 223-237.
[3] (a) Barnett, R. N. Yannouleas, C. Landman, U. Small Can Be Different; Z. Phys. D. 26 (1993)119. (b) Landman, U. Barnett, R. N. Cleveland, C. L. Cheng, H.-P. Small is Different in Clusters and Fullerenes; Kumar, V. J. Toassati, E. Martin, T. P. Eds.; World Scientific: London, 1993; p 39.
[4] Paraguay-Delgado, F. Antunez-Flores, W. Miki-Yoshida, M. Aguilar- Elguezabal, A.Santiago, P. Diaz, R and Ascencio, J. A. Microsc Microanal 10 (2004)(Suppl 2), 340-351.
[5] Pavesi, L. Dal Negro, L. Mazzoleni, C. Franzo, G. Priolo, F. Nature. 408 ( 2000) 440-448.
[6] Comini, E. Guidi, V. Malagu, C. Martinelli, G. Pan, Z. Sberveglieri, G and Wang, Z.L. Phys. Chem. B, 108 ( 2004) 1882-1887.
[7] opel, W. G¨. Schierbaum, K.D. Sens. Actuators. B: Chem. 26/27 (1995) 1-12.
[8] Batzill, M. Diebold, U. Prog. Surf. Sci. 79 (2005) 47-154.
[9] Sverveglieri, G. Sens. Actuators B: Chem. 23 (1995) 103-109.
[10] Williams, D.E. Henshaw, G.S. Pratt, K.F.E. J. Chem. Soc., Faraday Trans. 91 (1995) 3307-3308.
[11] Ruhland, B. Becker, T. Muller, G. Sens. Actuators B: Chem. 50 (1998) 85-94.
[12] Wang, W. Skeel, R. D. Analysis of a few numerical integration method for the langvin equation. Submitted for publication. 2001.
[13] Batzill,M. Sensors, 6 (2006) 1345-1366.
[14] Ciriaco, F. Cassidei, L. Cacciatore, M. Petrella, G. Chemical Physics. 303 (2004) 55-61
[15] Lzaguirre, J.A. Catarello, D. P. Wozniak, J.M. Skeel, R. D. J. Chem. Phys. 114 (2001) 2090-2099.
[16] Tiana,G. Sutto, L. Broglia, R.A. Physica A: Statistical Mechanics and its Applications. 380 (2007) 241-250.
[17] Strecker, N. Moroz, V. Jaraiz, M. Proceedings of the 2002 International Conference on Computational Nanoscience.2002, pp. 247.
[18] Liu, J. Ch. Monson, P. A. Adsorption. 11 (2005)(1), 5-11.
[19] Delville, A. J. Phys.Chem.B. 108 (2004) (28), 9984-9988.