
Abstract—The two common approaches to Structural Equation
Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and
Partial Least Squares SEM (PLS-SEM). There is much debate on the
performance of CB-SEM and PLS-SEM for small sample size and
when distributions are nonnormal. This study evaluates the
performance of CB-SEM and PLS-SEM under normality and
nonnormality conditions via a simulation. Monte Carlo Simulation in
R programming language was employed to generate data based on
the theoretical model with one endogenous and four exogenous
variables. Each latent variable has three indicators. For normal
distributions, CB-SEM estimates were found to be inaccurate for
small sample size while PLS-SEM could produce the path estimates.
Meanwhile, for a larger sample size, CB-SEM estimates have lower
variability compared to PLS-SEM. Under nonnormality, CB-SEM
path estimates were inaccurate for small sample size. However, CB-
SEM estimates are more accurate than those of PLS-SEM for sample
size of 50 and above. The PLS-SEM estimates are not accurate unless
sample size is very large.

Keywords—CB-SEM, Monte Carlo simulation, Normality
conditions, Nonnormality, PLS-SEM.

I. INTRODUCTION

HE most common approach to Structural Equation
modeling (SEM) is the Covariance-Based SEM (CB-

SEM). Another unique approach to SEM is the partial least
squares SEM (PLS-SEM). These methodologies have been
applied widely in fields such as marketing and consumer
behavior [1], [2], management [3], and psychology [4]. The
CB-SEM allows us to test how well the model fits the data and
it aims at minimizing the difference between the model
covariance matrix and the sample covariance matrix which is
obtained from the observed manifesting variables [5], [6]. CB-
SEM requires a set of stringent assumptions such as normality
of data and adequate sample size. When these assumptions for
CB-SEM are not met, the alternative approach to PLS-SEM
[7], [8] is used. The PLS-SEM makes use of a series of
ordinary least squares (OLS) regression to maximize the
variance explained for the endogenous constructs.

Simulation studies have investigated the statistical
advantage of PLS-SEM vis à vis small sample size [9]-[12].
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However, the debate on whether PLS-SEM performs better
under small sample size and non-normal conditions compared
to CB-SEM is still on-going in deciding which SEM
techniques perform better [13]. There are numerous softwares
for modeling data using CB-SEM and PLS-SEM. Some of the
most common softwares for CB-SEM are LISREL [14],
AMOS [15], EQS [16], and MPLUS. On the other hand, the
PLS path modeling software includes SmartPLS [17] and
PLS-Graph (Soft Modeling Inc 1992-2002). Generally, the
structural equation model consists of a set of endogenous and
exogenous constructs which are measured by manifesting
variables. SEM, usually considered as a second-generation
technique, allows the simultaneous modeling of relationships
among multiple endogenous and exogenous variables [11].

In CB-SEM, the default parameter estimation method is the
maximum likelihood (ML) although there are other estimation
methods such as the generalized least squares, weighted least
squares and the asymptotically distribution free (ADF)
methods. The ML is normally preferred when the data to be
analyzed is normal since it yields unbiased estimates [18]. CB-
SEM requires sufficient sample size. Given the asymptotic
property of the ML estimation, a minimum sample size is
required to generate results of sufficient accuracy. Many
researchers make use of the simple approach of the “rule of 5”
(ratio of a sample size to the number of parameters to be
estimated) under the normal distribution theory or the “rule of
10” to obtain appropriate significance tests [19]. On the other
hand, [6] suggested that a minimum sample size of 100-150 is
sufficient for a model with five or less constructs with each
constructed having more than 3 indicators. The assumption of
normality cannot be met in most empirical research. Some
simulation studies have investigated that given non-normality
conditions, CB-SEM was quite robust [20]-[23]. However,
[11] proposed that when the sample size is small and the data
is non-normal, PLS-SEM is a better approach.

PLS-SEM originated from H. Wold [24] under the name
NIPALS (nonlinear iterative partial least squares) and focuses
on maximizing the variance of the endogenous constructs
explained by the exogenous constructs instead of reproducing
the empirical covariance matrix [18]. It works with both
reflective and formative indicators. The reflective indicators
have error terms unlike the formative ones. PLS-SEM makes
use of the OLS regression-based approach to estimate the path
coefficients and the bootstrapping technique to obtain the
standard error and to test the paths significance. PLS-SEM is
well-suited when CB-SEM has limitations of sample size and
distributional assumption. The PLS-SEM structural model
reflects the relationships between the latent variables and a
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measurement component; it also consists of a third
component, the weight relations which are used to estimate the
latent variables [13]. A Monte Carlo simulation study
demonstrated that PLS can still produce meaningful results
even at small sample size such as 20 [13]. One rule-of-thumb
is that the sample size should be greater or equal to ten times
the number of indicators and also ten times the largest number
of arrows pointing to a particular latent variable [25]. Since
PLS-SEM is a non-parametric technique, it does not impose
distributional assumptions [26]. The only one requirement
which needs to be fulfilled is that all the linear OLS
regressions must be equal to the conditional expectation of the
dependent constructs [24]. The discussion of sample size and
normality assumptions is still on-going among researchers and
more simulation studies are needed to compare between CB-
SEM and PLS-SEM.

This paper focuses on a comparison of CB-SEM and PLS-
SEM under normal and nonnormal conditions. Section II
reviews the theoretical background of CB-SEM and PLS-
SEM. The simulation design is explained in Section III and the
results are presented in Section IV. Some recommendations
and conclusion are given in Section V.

II. REVIEW OF THE THEORY OF CB-SEM AND PLS-SEM

A. CB-SEM

Consider random vectors m,...,, 21η and

n,...,, 21
'ξ of latent dependent and independent

variables, respectively, and the following system of linear
structural relations [18], [22], [27]:

ζΓξB ηη (1)

where )( mmB and )( nmΓ are coefficient matrices and

),...,,( 21 m
'ζ is a random vector of residuals (errors in

equations, random disturbance terms). The elements of B
represent direct causal effects of variables on other

variables and the elements of Γ represent direct causal effects
of variables on variables. It is assumed that ζ is

uncorrelated with ξ and that I-B is nonsingular.

The vectors η and ξ are not observed; instead vectors

),...,,( 21 pyyy'y and ),...,,( 21 qxxx'x are observed such

that

εηΛy y (2)

and
δξΛx x (3)

where ε and δ are vectors of errors of measurement in y and
x, respectively. The matrices )( mpyΛ and )( nqxΛ are

regression matrices of y on η and of x on ξ respectively. It is

convenient to refer to y and x as the observed variables and η

and ξ as the latent variables. The errors of measurement are

assumed to be uncorrelated with η , ξ , and ζ , but may be

correlated among themselves.
In CB-SEM, the Maximum Likelihood (ML) estimation

method is usually employed to give parameter estimates such
that the covariance matrix of the theoretical model, is as
close as possible to the sample covariance matrix S. The ML
estimates are obtained by means of an iterative procedure
which minimizes a definite fitting function by successively
improving the parameter estimates starting with the initial
estimates [27]-[30]. Using ML, the fitting or likelihood
function is:

)(log)(log 1 qptrF SSΣΣ (9)

where for a square matrix A, A denotes the determinant of

A, tr(A) denotes the sum of the diagonal elements of A and
(p+q) is the total numbers of manifest variables (indicators).
The fitting function for ML is derived from the maximum
likelihood principle based on the assumption that the observed
variables have a multinormal distribution.

B. PLS-SEM

In PLS-SEM, the model is separated into two sub-models,
the measurement or outer model (relationships between
manifest variables and their associated latent variables) and
the structural or the inner model (relationships between latent
variables).

The PLS algorithm [31] consists of an iterative procedure of
OLS regressions and starts with the initialization (or outer
approximation) stage whereby the latent variables are
approximated by a linear combination of their manifesting
variables. The set of weights is determined using an approach
similar to principal component analysis for reflective
indicators and regression analysis for formative indicators.
The second step is the inner approximation followed by the
outer approximation where the best linear combination is
found to express each latent variable by means of its
manifesting variable and its coefficients are known as outer
weights. Then step 4 consists of calculating the factor scores.
After each step, the latent variables are scaled to have zero
mean and unit variance.

The Step 1 (initialization) is described as follows:
Let the manifesting variables (MVs), X1, …, Xk have

mean(Xi) = 0 and VAR(Xi) = 1. All weights are set equal to
one. The latent variables (LVs) are scaled to have unit
variance.

XMŶ (10)

)ˆ(

ˆ
ˆ

g

g
g

VAR y

y
y ,    g = 1, …, G (11)

where M is the adjacency matrix and the LVs are initialized as

)ˆ,...,ˆ(ˆ
1 GyyY .
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In Step 2, the inner approximation comprises of estimating
each LV as a weighted sum of its neighbouring LVs. Here, the
weighting technique depends on the applied weighting
scheme. The LVs are now computed again to ensure unit
variance.

EŶY
~

(12)

)y~(

y~
y~

g

g
g

VAR
,    g = 1, …, G (13)

The inner estimation is obtained by )~,...,~(
~

1 GyyY
.

In outer approximation, initially all weights are set equal to
one, and the weights are recalculated based on weighthing
scheme. The weights depend on the measurement mode; Mode
A (Reflective measurement) and Mode B (Formative
measurement). In Mode A, the block of MVs is the response
and the LV is the regressor:

gg

g
T
gg

T
g

T
g

COR X,y~
Xy~y~y~ŵ

1

(14)

In Mode B, the multiple regression coefficient is written
with the LV as the response and its block of MV as regressors:

)y~,X()X(

y~X)XX(ŵ

ggg

g
t
gg

T
gg

CORVAR 1

1

(15)

In this study only the reflective indicators were used (Mode
A).

In Step 4, the factor scores are calculated. The outer weights
vectors, w1, …, wG are arranged in an outer weights matrix W.
Equations (16) and (17) result in the outer estimation of the

latent variables, )ˆ,...,ˆ(ˆ
1 GyyY .

XWŶ (16)

)Ŷ(

Ŷ
Ŷ

g

g
g

VAR
,    g = 1, …, G (17)

Step 5 is an iterative step. The estimation of the factor
scores in Step 4 is taken to be final if the relative change of all
the outer weights from one iteration to the next is smaller than
a predefined tolerance:

new
kg

new
kg

old
kg

w

ww

ˆ

ˆˆ
< tolerance                    (18)

k = 1, …, K , g = 1, …, G

The weighting scheme is used for the estimation of the
inner weights of the PLS algorithm. According to the

weighting scheme using centroid, the matrix of inner weights
E is as follows:

0

)( ij
ij

rsign
e (19)

III. SIMULATION DESIGN

The Monte Carlo simulation procedures were used to
compare the performance of CB-SEM and PLS-SEM in terms
of the standardized path estimates. Fig. 1 shows the true
standardized estimates of the model employed by [20]. Firstly,
data were generated from a standard normal distribution for
the latent constructs and the residuals. The model consisted of
one endogenous and four exogenous constructs each having
three indicators. The standardized loadings of each three
reflective indicators were 0.70, 0.80 and 0.90 respectively.
Then, the nonnormality conditions were set by generating data
for the indicator variables using Chi-Square distribution with 2
degrees of freedom. This particular distribution accounted for
a skewness of 1.983 and a kurtosis of 4.375.

Thus, random observations from both random normal and
Chi-square distributions were generated for various sample
sizes. This study considered sample sizes (n) of 20, 40, 90,
150 and 200 conforming to the study by [20]. The minimum
sample size of n=20 was based on the “rule of 5” and n = 40
pertained to the “rule of 10”. The simulation was replicated
500 times for both CB-SEM and PLS-SEM. The standardized
path estimates were extracted for both CB-SEM and PLS-
SEM. For comparing between CB-SEM and PLS-SEM, box-
plots were created and 95% confidence intervals were
obtained. This simulation was carried out using R (A
Programming Environment for Data Analysis and Graphics).
The “lavaan” package [32] was used to perform CB-SEM and
the “semPLS” package [33] was adopted for the PLS-SEM
approach.

Fig. 1 Theoretical model with true standardized path estimates

, for cij = 1
, else , i, j = 1, …, G
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BOX-PLOTS

Size CB-SEM PLS-SEM

20

40

90

150

200

TABLE I
TS FOR CB-SEM AND PLS-SEM FOR NORMAL DISTRIBUTION

Size PLS-SEM

20

40

90

150

200

Size CB-SEM M

20

40

90

150

200
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BOX-PLOTS FO

Size CB-SEM PLS-SEM

20

40

90

150

200

TABLE II
FOR CB-SEM AND PLS-SEM FOR NON-NORMAL DISTRIBUTION

Size PLS-SEM

20

40

90

150

200

Size CB-SEM EM

20

40

90

150

200
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IV. DISCUSSION OF SIMULATION RESULTS

This section reports the simulation results and analysis of
the performance of the standardized path estimates for CB-
SEM and PLS-SEM under normal and non-normal conditions.
Graphical box-plots of the path estimates for various sample
sizes for the normal and non-normal were presented for
comparison purposes.

A. Effect of Normality on CB-SEM and PLS-SEM

Table I displays the box-plots of the standardized path
estimates for CB-SEM and PLS-SEM for sample sizes of 20,
40, 90, 150 and 200. From the boxplots, the medians for the
four standardized path estimates using CB-SEM were centered
at 0 for n = 20.

However, PLS-SEM showed an added advantage over CB-
SEM as it was observed that the median for the four path
estimates (Gammas) approached the true values.

Turning to n = 40, the medians of the path estimates for
both CB-SEM and PLS-SEM approached the true values of
the parameter. The medians were getting close to the
theoretical path estimates. Then, for n = 90 and 150, some
similarities became apparent for CB-SEM and PLS-SEM. The
median path estimates for both CB-SEM and PLS-SEM were
noted to be close to the true parameter values. Similarly at n
=150, both CB-SEM and PLS-SEM estimates converged to
the true path estimates. Finally, for large sample size of 200,
the path estimates were all very close to the true values for
both CB-SEM and PLS-SEM. However, a larger variability
was observed for PLS-SEM path estimates.

B. Effect of Non-Normality on CB-SEM and PLS-SEM

Table II displays the box-plots for CB-SEM and PLS-SEM
under nonnormal conditions. At the smallest sample size of n
= 20, CB-SEM could not estimate the path values (Gamma 1
to 4). The median for the CB-SEM estimates were centered at
zero. On the other hand, for n = 20, the four path estimates for
PLS-SEM are close to the true parameter values. Similarly, at
n = 40, the median of CB-SEM estimates are close to zero.
Meanwhile, at n = 40, PLS-SEM could estimate the path
estimates well. For n = 90, the medians of the CB-SEM
estimates starts to approach the true parameter values. Results
show that PLS-SEM was consistent in its ability to estimate
path coefficients for all the different sample sizes. At a bigger
sample size (n = 150 and 200), CB-SEM estimates have lower
variability and the path estimates are also closer to the true
values than PLS-SEM.

To investigate at which sample size CB-SEM and PLS-
SEM estimates converge to the true values, the mean path
estimate and 95% confidence interval for the mean was
obtained. For brevity, only the means and confidence intervals
for Gamma 1 (true value = 0. 48) are shown in Table III.
Confidence intervals are normally affected by the sample size;
small sample size usually has a wider confidence interval, thus
is less precise. According to the results in Table III, the
median for CB-SEM estimates for Gamma1 for a sample size
of 40 was centered at zero. However, PLS-SEM was able to
estimate the path with mean value 0.528 and 95% confidence

interval (0.382, 0473). At n = 45, the mean CB-SEM estimate
was 0.511 with a wide 95% confidence interval (0.439, 0.583).

TABLE III
MEAN AND CONFIDENCE INTERVALS FOR NON-NORMAL DISTRIBUTION

Sample size (n) Mean (95% Confidence Interval) for Gamma 1 (0.48)

CB-SEM PLS-SEM

20 0.851 (-5.68, 7.39) 0.404 (0.309, 0.499)

25 11.72 (-83.7, 107.2) 0.417 (0.342, 0.492)

30 -135.3 (-1235, 965) 0.417 (0.357, 0.477)

35 0.519 (0.414, 0.623) 0.429 (0.375, 0.484)

40 0.447 (-0.022, 0.916) 0.428 (0.382, 0.473)

45 0.511 (0.439, 0.583) 0.418 (0.378, 0.458)

50 0.482 (0.424, 0.540) 0.431 (0.395, 0.467)

55 0.488 (0.437, 0.538) 0.416 (0.381, 0.449)

60 0.502 (0.457, 0.547) 0.432 (0.402, 0.461)

65 0.494 (0.453, 0.537) 0.418 (0.389, 0.446)

70 0.491 (0.450, 0.533) 0.421 (0.396, 0.447)

75 0.487 (0.452, 0.522) 0.429 (0.406, 0.453)

80 0.498 (0.446, 0.529) 0.421 (0.398, 0.443)

85 0.496 (0.462, 0.529) 0.414 (0.393, 0.437)

90 0.4906 (0.461, 0.520) 0.426 (0.405, 0.447)

95 0.489 (0.460, 0.518) 0.418 (0.399, 0.436)

100 0.490 (0.463, 0.516) 0.417 (0.398, 0.435)

Results show that under non-normal conditions, PLS-SEM
could estimate the path but the values were far from the true
parameter values. However, PLS-SEM estimates have smaller
95% confidence intervals for all sample sizes. Moreover, at a
sample size of 60, both CB-SEM and PLS-SEM estimates are
nearing the true parameter value but with CB-SEM having a
slight advantage with men closer to the true value and smaller
confidence interval. Thus, under non-normality conditions, the
PLS-SEM estimates are less precise. CB-SEM is seen to
perform well at sample size 50 and above under non-normal
conditions.

V.CONCLUSION

This study compared CB-SEM and PLS-SEM when the
distribution of observed variables is normal and nonnormal.
Under normal distribution, CB-SEM failed to estimate
correctly the path estimates for small sample sizes. PLS-SEM
seemed to have a slight advantage over CB-SEM with the
ability to report medians nearing the true values for small
sizes. This is consistent with the findings by [13]. However,
for larger samples both CB-SEM and PLS-SEM have
estimates close to the theoretical values but the CB-SEM
estimates are more consistent with lower variability. For Non-
normal distribution, this study confirmed that CB-SEM clearly
does not work for small sample size. For sample size larger
than 50, CB-SEM produces more accurate estimates than PLS-
SEM.

Although, it has been reported that PLS-SEM works well
when distributional assumptions such as normality is not met,
this study found that PLS-SEM path estimates are less precise
than CB-SEM under both normal and non-normal conditions
when sample size is sufficient. It is recommended that the
choice between covariance (CB-SEM) and variance based
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(PLS-SEM) depends on the research goal. CB-SEM is more
appropriate for theory testing or confirmation of theory while
PLS-SEM will be useful if the objective is for prediction of
the endogenous variables. Further work is in progress to
investigate a robust approach to handling outliers for CB-SEM
and PLS-SEM

APPENDIX

The sample codes for PLS-SEM simulation using R are as
follows:

set.seed(12345)
for (i in 1:500)
{
data1 <- data.f(20)
ex <- names(data1)
Ex1m <- paste("KSI", c(rep(1:4, each=3)), sep="")
Endo <- rep ("Eta1", each=3)
ex1=c(Ex1m, Endo)
Exmm <- cbind(source = ex1, target = ex)

## STRUCTURAL MODEL
ext <- rep ("Eta1", each=4)
Ex1mto <- paste("KSI", c(rep(1:4)), sep="")
Ex1sm <- cbind(source = Ex1mto, target = ext)
EXI <- plsm(data = data1, strucmod = Ex1sm,
measuremod = Exmm)
goodhue <- sempls(model = EXI, data = data1,
wscheme = "centroid", maxit = 500)
beta[i, 1:4]<-pathCoeff(goodhue)[1:4, 5]
}
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