Search results for: alumina nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1591

Search results for: alumina nanoparticles

1201 Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles: Characterization and Applications

Authors: Surendra Kumar Gautam, Mahesh Dhungana

Abstract:

Magnesium oxide nanoparticles (MgO NPs) are less toxic to humans and the environment as compared to other metal oxide nanoparticles. Various conventional chemical and physical methods are used for synthesis whose toxicity level is high and highly expensive. As the best alternative, phyto-assisted synthesis has emerged, which uses extracts from plant parts for the synthesis of nanoparticles. Here, we report the synthesis of MgO nanoparticles with the assistance of beetroot extract and leaf extract of P. guajava and A. adenophora. The synthesized MgO NPs were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and UV-visible spectroscopy. X-ray analysis for the broadening of peaks was used to evaluate the crystallite size and lattice strain using Debye-Scherer and Williamson–Hall method. The results of crystallite size obtained by both methods are in close proximity. The crystallite size obtained by the Williamson-Hall method seems more accurate, with values being 8.1 nm and 13.2 nm for beetroot MgO NPs and P. guajava MgO NPs, respectively. The FT-IR spectroscopy revealed the dominance of chemical bonds as well as functional groups on MgO NPs surfaces. The UV-visible absorption spectra of MgO NPs were found to be 310 nm, 315 nm, and 315 nm for beetroot, P. guajava, and A. adenophora leaf extract, respectively. Among the three samples, beetroot-mediated MgO NPs were effective antibacterial against both gram-positive and Gram-negative bacteria. In addition, synthesized MgO NPs also show significant antioxidant efficacy against 1,1-diphenyl-2-picrylhydrazyl radical. Further, beetroot MgO NPs showed the highest photocatalytic activity of about 91% in comparison with other samples.

Keywords: MgO NPs, XRD, FTIR, antibacterial, antioxidant and photocatalytic activity

Procedia PDF Downloads 58
1200 Effect of Alkalinity of Water on the Aggregation of Colloidal Silver Nanoparticles

Authors: Fedda Y. Alzoubi, Ihsan A. Aljarrah

Abstract:

Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in different applications, especially in biomedical applications. Samples of different alkaline water were prepared in order to study the effect of alkalinity of water on the optical properties, size, and morphology of colloidal AgNPs prepared according to the chemical reduction method using the prepared water samples. Ultraviolet-Visible spectrophotometer, Zeta-sizer, and Scanning electron microscope (SEM) have been utilized to carry out this study. Absorption spectra AgNPs in different alkaline water show a surface Plasmon resonance (SPR) peak at the wavelength of 420 nm. The position of this peak is sensitive to the shape of the particles, and in our case, it indicates that the particles are spherical. As the alkalinity increases, the intensity of the SPR peak decreases, indicating the aggregation of particles. Zeta-sizer measurements show that the average diameter for AgNPs in pure water is found to be 53.51 nm, and this value increases as the alkalinity increases. Zeta potential values of samples show that the negatively coated particles are stable in the solution. SEM images insure the spherical shape of the prepared nanoparticles and show that as the alkalinity increases the particles aggregate into larger particles.

Keywords: aggregation, alkalinity, colloid, nanoparticle

Procedia PDF Downloads 104
1199 Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles

Authors: Saman Momeni, Abolghassem Zabihollah, Mehdi Behzad

Abstract:

Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior.

Keywords: non uniform laminated structures, MR fluid, nanoparticles, vibration, stiffness

Procedia PDF Downloads 195
1198 Analyzing the Evolution of Polythiophene Nanoparticles Optically, Structurally, and Morphologically as a Sers (Surface-Enhanced Raman Spectroscopy) Sensor Pb²⁺ Detection in River Water

Authors: Temesgen Geremew

Abstract:

This study investigates the evolution of polythiophene nanoparticles (PThNPs) as surface-enhanced Raman spectroscopy (SERS) sensors for Pb²⁺ detection in river water. We analyze the PThNPs' optical, structural, and morphological properties at different stages of their development to understand their SERS performance. Techniques like UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are employed for characterization. The SERS sensitivity towards Pb²⁺ is evaluated by monitoring the peak intensity of a specific Raman band upon increasing metal ion concentration. The study aims to elucidate the relationship between the PThNPs' characteristics and their SERS efficiency for Pb²⁺ detection, paving the way for optimizing their design and fabrication for improved sensing performance in real-world environmental monitoring applications.

Keywords: polythiophene, Pb2+, SERS, nanoparticles

Procedia PDF Downloads 24
1197 Biologically Synthesised Silver Nanoparticles Induces Autophagy and JNK Signaling as a Pro-Survival Response by Abrogating Reactive Oxygen Species Accumulation in Cancer Cells

Authors: Sudeshna Mukherjee, Leena Fageria, R. Venkataramana Dilip, Rajdeep Chowdhury, Jitendra Panwar

Abstract:

Metal nanoparticles in recent years have gained importance in cancer therapy due to their enhanced permeability retention effect. Among various nanomaterials, silver nanoparticles (AgNPs) have received considerable attention due to their unique properties like conductivity, chemical stability, relative lower toxicity and outstanding therapeutic potential, such as anti-inflammatory, antimicrobial and anti-cancerous activities. In this study, we took a greener approach to synthesize silver nanoparticle from fungus and analyze its effects on both epithelial and mesenchymal derived cancer cells. Much research has been done on nanoparticle-induced apoptosis, but little is known about its role in autophagy. In our study, the silver nanoparticles were seen to induce autophagy which was analyzed by studying the expression of several autophagy markers like, LC3B-II and ATG genes. Monodansylcadaverine (MDC) assay also revealed the induction of autophagy upon treatment with AgNPs. Inhibition of autophagy by chloroquine resulted in increased cell death suggesting autophagy as a survival strategy adopted by the cells. In parallel to autophagy induction, silver nanoparticles induced ROS accumulation. Interestingly, autophagy inhibition by chloroquine increased ROS level, resulting in enhanced cell death. We further analyzed MAPK signaling upon AgNP treatment. It was observed that along with autophagy, activation of JNK signaling served as pro-survival while ERK signaling served as a pro-death signal. Our results provide valuable insights into the role of autophagy upon AgNP exposure and provide cues to probabilistic strategies to effectively sensitize cancer cells.

Keywords: autophagy, JNK signalling, reactive oxygen species, silver nanoparticles

Procedia PDF Downloads 333
1196 Catalytic Performance of Fe3O4 Nanoparticles (Fe3O4 NPs) in the Synthesis of Pyrazolines

Authors: Ali Gharib, Leila Vojdanifard, Nader Noroozi Pesyan

Abstract:

Different Pyrazoline derivatives were synthesized by cyclization of substituted chalcone derivatives in presence of hydrazine hydrate. A series of novel 1,3,5-triaryl pyrazoline derivatives has been synthesized by the reaction of chalcone and phenylhydrazine in the presence of the Fe3O4 NPs, in high yields. The structures of compounds obtained were determined by IR and 1H NMR spectra. Fe3O4 NPs was recycled and no appreciable change in activity was noticed after three cycles.

Keywords: pyrazoline, chalcone, nanoparticles, Fe3O4, catalyst, synthesis

Procedia PDF Downloads 365
1195 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing

Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai

Abstract:

Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil

Keywords: journal bearing, TiO2 nanoparticles, viscosity model, Reynold's equation, load carrying capacity

Procedia PDF Downloads 499
1194 Magnetic Nanoparticles Coated with Modified Polysaccharides for the Immobilization of Glycoproteins

Authors: Kinga Mylkie, Pawel Nowak, Marta Z. Borowska

Abstract:

The most important proteins in human serum responsible for drug binding are human serum albumin (HSA) and α1-acid glycoprotein (AGP). The AGP molecule is a glycoconjugate containing a single polypeptide chain composed of 183 amino acids (the core of the protein), and five glycan branched chains (sugar part) covalently linked by an N-glycosidic bond with aspartyl residues (Asp(N) -15, -38, -54, -75, - 85) of polypeptide chain. This protein plays an important role in binding alkaline drugs, a large group of drugs used in psychiatry, some acid drugs (e.g., coumarin anticoagulants), and neutral drugs (steroid hormones). The main goal of the research was to obtain magnetic nanoparticles coated with biopolymers in a chemically modified form, which will have highly reactive functional groups able to effectively immobilize the glycoprotein (acid α1-glycoprotein) without losing the ability to bind active substances. The first phase of the project involved the chemical modification of biopolymer starch. Modification of starch was carried out by methods of organic synthesis, leading to the preparation of a polymer enriched on its surface with aldehyde groups, which in the next step was coupled with 3-aminophenylboronic acid. Magnetite nanoparticles coated with starch were prepared by in situ co-precipitation and then oxidized with a 1 M sodium periodate solution to form a dialdehyde starch coating. Afterward, the reaction between the magnetite nanoparticles coated with dialdehyde starch and 3-aminophenylboronic acid was carried out. The obtained materials consist of a magnetite core surrounded by a layer of modified polymer, which contains on its surface dihydroxyboryl groups of boronic acids which are capable of binding glycoproteins. Magnetic nanoparticles obtained as carriers for plasma protein immobilization were fully characterized by ATR-FTIR, TEM, SEM, and DLS. The glycoprotein was immobilized on the obtained nanoparticles. The amount of mobilized protein was determined by the Bradford method.

Keywords: glycoproteins, immobilization, magnetic nanoparticles, polysaccharides

Procedia PDF Downloads 93
1193 Sustainable Production of Tin Oxide Nanoparticles: Exploring Synthesis Techniques, Formation Mechanisms, and Versatile Applications

Authors: Yemane Tadesse Gebreslassie, Henok Gidey Gebretnsae

Abstract:

Nanotechnology has emerged as a highly promising field of research with wide-ranging applications across various scientific disciplines. In recent years, tin oxide has garnered significant attention due to its intriguing properties, particularly when synthesized in the nanoscale range. While numerous physical and chemical methods exist for producing tin oxide nanoparticles, these approaches tend to be costly, energy-intensive, and involve the use of toxic chemicals. Given the growing concerns regarding human health and environmental impact, there has been a shift towards developing cost-effective and environmentally friendly processes for tin oxide nanoparticle synthesis. Green synthesis methods utilizing biological entities such as plant extracts, bacteria, and natural biomolecules have shown promise in successfully producing tin oxide nanoparticles. However, scaling up the production to an industrial level using green synthesis approaches remains challenging due to the complexity of biological substrates, which hinders the elucidation of reaction mechanisms and formation processes. Thus, this review aims to provide an overview of the various sources of biological entities and methodologies employed in the green synthesis of tin oxide nanoparticles, as well as their impact on nanoparticle properties. Furthermore, this research delves into the strides made in comprehending the mechanisms behind the formation of nanoparticles as documented in existing literature. It also sheds light on the array of analytical techniques employed to investigate and elucidate the characteristics of these minuscule particles.

Keywords: nanotechnology, tin oxide, green synthesis, formation mechanisms

Procedia PDF Downloads 23
1192 Harnessing the Generation of Ferromagnetic and Silver Nanostructures from Tropical Aquatic Microbial Nanofactories

Authors: Patricia Jayshree Jacob, Mas Jaffri Masarudinb, Mohd Zobir Hussein, Raha Abdul Rahim

Abstract:

Iron based ferromagnetic nanoparticles (IONP) and silver nanostructures (AgNP) have found a wide range of application in antimicrobial therapy, cell targeting, and environmental applications. As such, the design of well-defined monodisperse IONPs and AgNPs have become an essential tool in nanotechnology. Fabrication of these nanostructures using conventional methods is not environmentally conducive and weigh heavily on energy and outlays. Selected microorganisms possess the innate ability to reduce metallic ions in colloidal aqueous solution to generate nanoparticles. Hence, harnessing this potential is a way forward in constructing microbial nano-factories, capable of churning out high yields of well-defined IONP’s and AgNP's with physicochemical characteristics on par with the best synthetically produced nanostructures. In this paper, we report the isolation and characterization of bacterial strains isolated from the tropical marine and freshwater ecosystems of Malaysia that demonstrated facile and rapid generation of ferromagnetic nanoparticles and silver nanostructures when precursors such as FeCl₃.6H₂O and AgNO₃ were added to the cell-free bacterial lysate in colloidal solution. Characterization of these nanoparticles was carried out using FESEM, UV Spectrophotometer, XRD, DLS and FTIR. This aerobic bioprocess was carried out at ambient temperature and humidity and has the potential to be developed for environmental friendly, cost effective large scale production of IONP’s. A preliminary bioprocess study on the harvesting time, incubation temperature and pH was also carried out to determine pertinent abiotic parameters contributing to the optimal production of these nanostructures.

Keywords: iron oxide nanoparticles, silver nanoparticles, biosynthesis, aquatic bacteria

Procedia PDF Downloads 251
1191 Structural and Phase Transformations of Pure and Silica Treated Nanofibrous Al₂O₃

Authors: T. H. N. Nguyen, A. Khodan, M. Amamra, J-V. Vignes, A. Kanaev

Abstract:

The ultraporous nanofibrous alumina (NOA, Al2O3·nH2O) was synthesized by oxidation of laminated aluminium plates through a liquid mercury-silver layer in a humid atmosphere ~80% at 25°C. The material has an extremely high purity (99%), porosity (90%) and specific area (300 m2/g). The subsequent annealing of raw NOA permits obtaining pure transition phase (γ and θ) nanostructured materials. In this combination, we report on chemical, structural and phase transformations of pure and modified NOA by an impregnation of trimethylethoxysilane (TMES) and tetraethoxysilane (TEOS) during thermal annealing in the temperature range between 20 and 1650°C. The mass density, specific area, average diameter and specific area are analysed. The 3D model of pure NOA monoliths and silica modified NOA is proposed, which successfully describes the evolution of specific area, mass density and phase transformations. Activation energies of the mass transport in two regimes of surface diffusion and bulk sintering were obtained based on this model. We conclude about a common origin of modifications of the NOA morphology, chemical composition and phase transition.

Keywords: nanostructured materials, alumina (Al₂O₃), morphology, phase transitions

Procedia PDF Downloads 353
1190 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 329
1189 Evaluation of the Heating Capability and in vitro Hemolysis of Nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) Ferrites Prepared by Sol-gel Method

Authors: Laura Elena De León Prado, Dora Alicia Cortés Hernández, Javier Sánchez

Abstract:

Among the different cancer treatments that are currently used, hyperthermia has a promising potential due to the multiple benefits that are obtained by this technique. In general terms, hyperthermia is a method that takes advantage of the sensitivity of cancer cells to heat, in order to damage or destroy them. Within the different ways of supplying heat to cancer cells and achieve their destruction or damage, the use of magnetic nanoparticles has attracted attention due to the capability of these particles to generate heat under the influence of an external magnetic field. In addition, these nanoparticles have a high surface area and sizes similar or even lower than biological entities, which allow their approaching and interaction with a specific region of interest. The most used magnetic nanoparticles for hyperthermia treatment are those based on iron oxides, mainly magnetite and maghemite, due to their biocompatibility, good magnetic properties and chemical stability. However, in order to fulfill more efficiently the requirements that demand the treatment of magnetic hyperthermia, there have been investigations using ferrites that incorporate different metallic ions, such as Mg, Mn, Co, Ca, Ni, Cu, Li, Gd, etc., in their structure. This paper reports the synthesis of nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) ferrites by sol-gel method and their evaluation in terms of heating capability and in vitro hemolysis to determine the potential use of these nanoparticles as thermoseeds for the treatment of cancer by magnetic hyperthermia. It was possible to obtain ferrites with nanometric sizes, a single crystalline phase with an inverse spinel structure and a behavior near to that of superparamagnetic materials. Additionally, at concentrations of 10 mg of magnetic material per mL of water, it was possible to reach a temperature of approximately 45°C, which is within the range of temperatures used for the treatment of hyperthermia. The results of the in vitro hemolysis assay showed that, at the concentrations tested, these nanoparticles are non-hemolytic, as their percentage of hemolysis is close to zero. Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.

Keywords: ferrites, heating capability, hemolysis, nanoparticles, sol-gel

Procedia PDF Downloads 314
1188 Cartilage Mimicking Coatings to Increase the Life-Span of Bearing Surfaces in Joint Prosthesis

Authors: L. Sánchez-Abella, I. Loinaz, H-J. Grande, D. Dupin

Abstract:

Aseptic loosening remains as the principal cause of revision in total hip arthroplasty (THA). For long-term implantations, submicron particles are generated in vivo due to the inherent wear of the prosthesis. When this occurs, macrophages undergo phagocytosis and secretion of bone resorptive cytokines inducing osteolysis, hence loosening of the implanted prosthesis. Therefore, new technologies are required to reduce the wear of the bearing materials and hence increase the life-span of the prosthesis. Our strategy focuses on surface modification of the bearing materials with a hydrophilic coating based on cross-linked water-soluble (meth)acrylic monomers to improve their tribological behavior. These coatings are biocompatible, with high swelling capacity and antifouling properties, mimicking the properties of natural cartilage, i.e. wear resistance with a permanent hydrated layer that prevents prosthesis damage. Cartilage mimicking based coatings may be also used to protect medical device surfaces from damage and scratches that will compromise their integrity and hence their safety. However, there are only a few reports on the mechanical and tribological characteristics of this type of coatings. Clear beneficial advantages of this coating have been demonstrated in different conditions and different materials, such as Ultra-high molecular weight polyethylene (UHMWPE), Polyethylene (XLPE), Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK), cobalt-chromium (CoCr), Stainless steel, Zirconia Toughened Alumina (ZTA) and Alumina. Using routine tribological experiments, the wear for UHMWPE substrate was decreased by 75% against alumina, ZTA and stainless steel. For PEEK-CFR substrate coated, the amount of material lost against ZTA and CrCo was at least 40% lower. Experiments on hip simulator allowed coated ZTA femoral heads and coated UHMWPE cups to be validated with a decrease of 80% of loss material. Further experiments on hip simulator adding abrasive particles (1 micron sized alumina particles) during 3 million cycles, on a total of 6 million, demonstrated a decreased of around 55% of wear compared to uncoated UHMWPE and uncoated XLPE. In conclusion, CIDETEC‘s hydrogel coating technology is versatile and can be adapted to protect a large range of surfaces, even in abrasive conditions.

Keywords: cartilage, hydrogel, hydrophilic coating, joint

Procedia PDF Downloads 96
1187 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 77
1186 Nanoparticles Made from PNIPAM-G-PEO Double Hydrophilic Copolymers for Temperature-Controlled Drug Delivery

Authors: Victoria I. Michailova, Denitsa B. Momekova, Hristiana A. Velichkova, Evgeni H. Ivanov

Abstract:

The aim of this work is to design and develop thermo-responsive nanosized drug delivery systems based on poly(N-isopropylacrylamide)-g-poly(ethylene oxide) (PNIPAM-g-PEO) double hydrophilic graft copolymers. The PNIPAM-g-PEO copolymers are able to self-assemble in water into nanoparticles above the LCST of the thermo-responsive PNIPAM backbone and to disassemble and rapidly release the entrapped drugs upon cooling. However, their drug delivery applications are often hindered by their low loading capacity as the drugs to be encapsulated do not dissolve in water. In order to overcome this limitation, here we applied a low-temperature procedure with ethanol as an alternative route to the formation and loading a model hydrophobic drug, Indomethacin (IMC), into PNIPAM-g-PEO nanoparticles. The rationale for this approach was that ethanol dissolves both IMC and the copolymer and its mixing with water may induce micellization of PNIPAM-g-PEO at temperatures lower than the LCST. The influence of the volume fraction of ethanol and the temperature on the aggregation characteristics of PNIPAM-g-PEO copolymers (2.7 mol% PEO) was investigated by means of DLS, TEM and rheological dynamic oscillatory tests. The studies showed rich phase behavior at T < LCST, incl. the formation of highly solvated 500-1000 nm complex structures, 30-70 nm micelles and polymersomes as well as giant polymersomes, as the fraction of added ethanol increased. We believe that the PNIPAM-g-PEO self-assembly is favored due to the different solvation of its constituting blocks in ethanol-water mixtures. The incorporation of IMC led to alteration of the physicochemical and morphological characteristics of the blank nanoparticles. In this case, only monodisperse polymersomes and micelles were observed in the solutions with an average diameter less than 65 nm and substantial drug loading (DLC ~117 – 146 wt%). Indomethacin release from the nanoparticles was responsive to temperature changes, being much faster at a temperature of 42oC compared to that of 37oC under otherwise the same conditions. The results obtained suggest that these PNIPAM-g-PEO nanoparticles could be potential in mild hyper-thermic delivery of nonsteroidal anti-inflammatory drugs.

Keywords: drug delivery, nanoparticles, poly(N-isopropylacryl amide)-g-poly(ethylene oxide), thermo-responsive

Procedia PDF Downloads 258
1185 Famotidine Loaded Solid Lipid Nanoparticles (SLN) for Oral Delivery System

Authors: Rachmat Mauludin, Novita R. Kusuma, Diky Mudhakir

Abstract:

Famotidine (FMT) is one of used substances in the treatment of hiperacidity and peptic ulcer, administered orally and parenterally via intravenous injection. Oral administration, which is more favorable, has been reported to have many obstacles in the process of the treatment, includes decreasing the bioavailability of FMT. This research was aimed to prepare FMT in form of solid lipid nanoparticles (SLN) with size ranging between 100-200 nm. The research was carried out also by optimizing factors that may affect physical stability of SLN. Formulation of Famotidine SLN was carried out by optimizing factors, such as duration of homogenization and sonication, lipid concentration, stabilizer composition and stabilizer concentration. SLN physical stability was evaluated (particle size distribution) for 42 days in 3 diferent temperatures. Entrapment efficiency and drug loading was determined indirectly and directly. The morphology of SLN was visualized by transmission electron microscope (TEM). In vitro release study of FMT was conducted in 2 mediums, at pH of 1.2 and 7.4. Chemical stability of FMT was determined by quantifying the concentration of FMT within 42 days. Famotidin SLN consisted of GMS as lipid and poloxamer 188, lecithin, and polysorbate 80 as stabilizers. Homogenization and sonication was performed for 5 minutes and 10 minutes. Physyical stability of nanoparticles at 3 different temperatures was no significant difference. The best formula was physically stable until 42 days with mean particle size below 200 nm. Nanoparticles produced was able to entrap FMT until 86.6%. Evaluation by TEM showed that nanoparticles was spherical and solid. In medium pH of 1.2, FMT was released only 30% during 4 hour. On the other hand, within 4 hours SLN could release FMT completely in medium pH of 7.4. The FMT concentration in nanoparticles dispersion was maintained until 95% in 42 days (40oC, RH 75%). Famotidine SLN was able to be produced with mean particle size ranging between 100-200 nm and physically stable for 42 days. SLN could be loaded by 86,6% of FMT. Morphologically, obtained SLN was spheric and solid. During 4 hours in medium pH of 1.2 and 7.4, FMT was released until 30% and 100%, respectively.

Keywords: solid lipid nanoparticle (SLN), famotidine (FMT), physicochemical properties, release study

Procedia PDF Downloads 331
1184 Effect of Zinc Oxide Nanoparticles along with Sodium Hydroxide on Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate

Authors: Mohammad Mirjalili, Maryam Mohammdi, Loghman Karimi

Abstract:

In this study, synthesis of zinc oxide nanoparticles was carried out along with the hydrolysis of Polyethylene terephthalate using sodium hydroxide to increase the surface activity and enhance the nanoparticles adsorption. The polyester fabrics were treated with zinc acetate and sodium hydroxide at ultrasound bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The self-cleaning property of treated polyethylene terephthalate was evaluated through discoloring methylene blue stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound treated polyethylene terephthalate improved significantly.

Keywords: zinc oxide, polyethylene terephthalate, self-cleaning, antibacterial

Procedia PDF Downloads 298
1183 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells

Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah

Abstract:

Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.

Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell

Procedia PDF Downloads 257
1182 Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction

Authors: Abhishek Chandra, Man Singh

Abstract:

Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group.

Keywords: silver nanoparticle, surfactant, methylene blue, amino acid

Procedia PDF Downloads 331
1181 Control of Listeria monocytogenes ATCC7644 in Fresh Tomato and Carrot with Zinc Oxide Nanoparticles

Authors: Oluwatosin A. Ijabadeniyi, Faith Semwayo

Abstract:

Preference for consumption of fresh and minimally processed fruits and vegetables continues to be on the upward trend however food-borne outbreaks related to them have also been on the increase. In this study the effect of zinc oxide nanoparticles on controlling Listeria monocytogenes ATCC 7644 in tomatoes and carrots during storage was investigated. Nutrient broth was inoculated with Listeria monocytogenes ATCC 7644 and thereafter inoculated with 0.3mg/ml nano-zinc oxide solution and 1.2mg/ml nano-zinc oxide solution and 200ppm chlorine was used as a control. Whole tomatoes and carrots were also inoculated with Listeria monocytogenes ATCC 7644 after which they were dipped into zinc oxide nanoparticle solutions and chlorine solutions. 1.2 mg/ml had a 2.40 log reduction; 0.3mg/ml nano-zinc oxide solution had a log reduction of 2.15 in the broth solution. There was however a 4.89 log and 4.46 reduction by 200 ppm chlorine in tomato and carrot respectively. Control with 0.3 mg/ml zinc oxide nanoparticles resulted in a log reduction of 5.19 in tomato and 3.66 in carrots. 1.2 mg/ml nanozinc oxide solution resulted in a 5.53 log reduction in tomato and a 4.44 log reduction in carrots. A combination of 50ppm Chlorine and 0.3 mg/ml nanozinc oxide was also used and resulted in log reductions of 5.76 and 4.84 respectively in tomatoes and carrots. Treatments were more effective in tomatoes than in carrots and the combination of 50ppm Chlorine and 0.3 mg/ml ZnO resulted in the highest log reductions in both vegetables. Statistical analysis however showed that there was no significant difference between treatments with Chlorine and nanoparticle solutions. This study therefore indicates that zinc oxide nanoparticles have the potential for use as a control agent in the fresh produce industry.

Keywords: Listeria monocytogenes, nanoparticles, tomato, carrot

Procedia PDF Downloads 481
1180 Nanoparticles-Protein Hybrid-Based Magnetic Liposome

Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek

Abstract:

Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues1. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics2. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI)3. The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology4. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III)/Iron(II) chloride with the leaf extract of Dhatura Inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.

Keywords: nanoparticles-protein hybrid, magnetic liposome, medical, pharmaceutical science

Procedia PDF Downloads 228
1179 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers

Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole

Abstract:

Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)

Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing

Procedia PDF Downloads 102
1178 Study of the Microstructure and Mechanical Properties of Locally Developed Carbon Fibers-Silica Sand Nanoparticles Aluminium Based Hybrid Composites

Authors: Tahir Ahmad, M. Kamran, R. Ahmad, M. T. Z. Butt

Abstract:

Hybrid aluminum metal matrix composites with 1, 2, 3 and 4 wt. % of silica sand nanoparticles and electro-less nickel coated carbon fibers were successfully developed using sand casting technique. Epoxy coating of carbon fibers was removed and phosphorous-nickel coating was successfully applied via electro-less route. The developed hybrid composites were characterized using micro hardness tester, tensile testing, and optical microscopy. The gradual increase of reinforcing phases yielded improved mechanical properties such as hardness and tensile strength. The increase in hardness was attributed to the presence of silica sand nanoparticles whereas electro-less nickel coated carbon fibers enhanced the tensile properties of developed hybrid composites. The microstructure of the developed hybrid composites revealed the homogeneous distribution of both carbon fibers and silica sand nanoparticles in aluminum based hybrid composites. The formation of dendrite microstructure is the main cause of improving mechanical properties.

Keywords: aluminum based hybrid composites, mechanical properties, microstructure, microstructure and mechanical properties relationship

Procedia PDF Downloads 383
1177 Dual Drug Piperine-Paclitaxel Nanoparticles Inhibit Migration and Invasion in Human Breast Cancer Cells

Authors: Monika Verma, Renuka Sharma, B. R. Gulati, Namita Singh

Abstract:

In combination therapy, two chemotherapeutic agents work together in a collaborative action. It has appeared as one of the promising approaches to improve anti-cancer treatment efficacy. In the present investigation, piperine (P-NPS), paclitaxel (PTX NPS), and a combination of both, piperine-paclitaxel nanoparticle (Pip-PTX NPS), were made by the nanoprecipitation method and later characterized by PSA, DSC, SEM, TEM, and FTIR. All nanoparticles exhibited a monodispersed size distribution with a size of below 200 nm, zeta potential ranges from (-30-40mV) and a narrow polydispersity index (>0.3) of the drugs. The average encapsulation efficiency was found to be between 80 and 90%. In vitro release of drugs for nanoparticles was done spectrophotometrically. FTIR and DSC results confirmed the presence of the drug. The Pip-PTX NPS significantly inhibit cell proliferation as compared to the native drugs nanoparticles in the breast cancer cell line MCF-7. In addition, Pip-PTX NPS suppresses cells in colony formation and soft gel agar assay. Scratch migration and Transwell chamber invasion assays revealed that combined nanoparticles reduce the migration and invasion of breast cancer cells. Morphological studies showed that Pip-PTX NPS penetrates the cells and induces apoptosis, which was further confirmed by DNA fragmentation, SEM, and western blot analysis. Taken together, Pip-PTX NPS inhibits cell proliferation, anchorage dependent and anchorage independent cell growth, reduces migration and invasion, and induces apoptosis in cells. These findings support that combination therapy using Pip-PTX NPS represents a potential approach and could be helpful in the future for breast cancer therapy.

Keywords: piperine, paclitaxel, breast cancer, apoptosis

Procedia PDF Downloads 74
1176 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver

Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem

Abstract:

Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.

Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization

Procedia PDF Downloads 340
1175 Cyclic NGR Peptide Anchored Block Co-Polymeric Nanoparticles as Dual Targeting Drug Delivery System for Solid Tumor Therapy

Authors: Madhu Gupta, G. P. Agrawa, Suresh P. Vyas

Abstract:

Certain tumor cells overexpress a membrane-spanning molecule aminopeptidase N (CD13) isoform, which is the receptor for peptides containing the NGR motif. NGR-modified Docetaxel (DTX)-loaded PEG-b-PLGA polymeric nanoparticles (cNGR-DNB-NPs) were developed and evaluated for their in vitro potential in HT-1080 cell line. The cNGR-DNB-NPs containing particles were about 148 nm in diameter with spherical shape and high encapsulation efficiency. Cellular uptake was confirmed both qualitatively and quantitatively by Confocal Laser Scanning Microscopy (CLSM) and flow cytometry. Both quantitatively and qualitatively results confirmed the NGR conjugated nanoparticles revealed the higher uptake of nanoparticles by CD13-overexpressed tumor cells. Free NGR inhibited the cellular uptake of cNGR-DNB-NPs, revealing the mechanism of receptor mediated endocytosis. In vitro cytotoxicity studies demonstrated that cNGR-DNB-NPs, formulation was more cytotoxic than unconjugated one, which were consistent well with the observation of cellular uptake. Hence, the selective delivery of cNGR-DNB-NPs formulation in CD13-overexpressing tumors represents a potential approach for the design of nanocarrier-based dual targeted delivery systems for targeting the tumor cells and vasculature.

Keywords: solid Tumor, docetaxel, targeting, NGR ligand

Procedia PDF Downloads 459
1174 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid

Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi

Abstract:

In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.

Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point

Procedia PDF Downloads 53
1173 Nanoenergetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators

Authors: Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim

Abstract:

In this study, we systematically investigated the effect of nanoscale energetic materials in formulations of aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ~0.3 m/s. However, the addition of Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ~5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ~0.6 L/s, which was significantly increased to ~3.9 L/s by adding Al NPs to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were highly effective in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ~140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ~50 ms for airbag inflation.

Keywords: nanoenergetic materials, aluminum nanoparticles, copper oxide nanoparticles, gas generators

Procedia PDF Downloads 341
1172 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Z-scan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample.The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: nanoscale materials, silver sulfide nanoparticles, nonlinear absorption, nonlinear scattering, optical limiting

Procedia PDF Downloads 363