Search results for: cerebrovascular disease
3675 Assessment of Platelet and Lymphocyte Interaction in Autoimmune Hyperthyroidism
Authors: Małgorzata Tomczyńska, Joanna Saluk-Bijak
Abstract:
Background: Graves’ disease is a frequent organ-specific autoimmune thyroid disease, which characterized by the presence of different kind autoantibodies, that, in most cases, act as agonists of the thyrotropin receptor, leading to hyperthyroidism. Role of platelets and lymphocytes can be modulated in the pathophysiology of thyroid autoimmune diseases. Interference in the physiology of platelets can lead to enhanced activity of these cells. Activated platelets can bind to circulating lymphocytes and to affect lymphocyte adhesion. Platelets and lymphocytes can regulate mutual functions. Therefore, the activation of T lymphocytes, as well as blood platelets, is associated with the development of inflammation and oxidative stress within the target tissue. The present study was performed to investigate a platelet-lymphocyte relation by assessing the degree of their mutual aggregation in whole blood of patients with Graves’ disease. Also, the purpose of this study was to examine the impact of platelet interaction on lymphocyte migration capacity. Methods: 30 patients with Graves’ disease were recruited in the study. The matched 30 healthy subjects were served as the control group. Immunophenotyping of lymphocytes was carried out by flow cytometry method. A CytoSelect™ Cell Migration Assay Kit was used to evaluate lymphocyte migration and adhesion to blood platelets. Visual assessment of lymphocyte-platelet aggregate morphology was done using confocal microscope after magnetic cell isolation by Miltenyi Biotec. Results: The migration and functional responses of lymphocytes to blood platelets were greater in the group of Graves’ disease patients compared with healthy controls. The group of Graves’ disease patients exhibited a reduced T lymphocyte and a higher B cell count compared with controls. Based on microscopic analysis, more platelet-lymphocyte aggregates were found in patients than in control. Conclusions: Studies have shown that in Graves' disease, lymphocytes show increased platelet affinity, more strongly migrating toward them, and forming mutual cellular conglomerates. This may be due to the increased activation of blood platelets in this disease.Keywords: blood platelets, cell migration, Graves’ disease, lymphocytes, lymphocyte-platelet aggregates
Procedia PDF Downloads 2313674 Transmission Dynamics of Lumpy Skin Disease in Ethiopia
Authors: Wassie Molla, Klaas Frankena, Mart De Jong
Abstract:
Lumpy skin disease (LSD) is a severe viral disease of cattle, which often occurs in epidemic form. It is caused by lumpy skin disease virus of the genus capripoxvirus of family poxviridae. Mathematical models play important role in the study of infectious diseases epidemiology. They help to explain the dynamics and understand the transmission of an infectious disease within a population. Understanding the transmission dynamics of lumpy skin disease between animals is important for the implementation of effective prevention and control measures against the disease. This study was carried out in central and north-western part of Ethiopia with the objectives to understand LSD outbreak dynamics, quantify the transmission between animals and herds, and estimate the disease reproduction ratio in dominantly crop-livestock mixed and commercial herd types. Field observation and follow-up study were undertaken, and the transmission parameters were estimated based on a SIR epidemic model in which individuals are susceptible (S), infected and infectious (I), and recovered and immune or dead (R) using the final size and generalized linear model methods. The result showed that a higher morbidity was recorded in infected crop-livestock (24.1%) mixed production system herds than infected commercial production (17.5%) system herds whereas mortality was higher in intensive (4.0%) than crop-livestock (1.5%) system and the differences were statistically significant. The transmission rate among animals and between herds were 0.75 and 0.68 per week, respectively in dominantly crop-livestock production system. The transmission study undertaken in dominantly crop-livestock production system highlighted the presence of statistically significant seasonal difference in LSD transmission among animals. The reproduction numbers of LSD in dominantly crop-livestock production system were 1.06 among animals and 1.28 between herds whereas it varies from 1.03 to 1.31 among animals in commercial production system. Though the R estimated for LSD in different production systems at different localities is greater than 1, its magnitude is low implying that the disease can be easily controlled by implementing the appropriate control measures.Keywords: commercial, crop-livestock, Ethiopia, LSD, reproduction number, transmission
Procedia PDF Downloads 3023673 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis
Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar
Abstract:
Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR
Procedia PDF Downloads 903672 Epileptic Seizures in Patients with Multiple Sclerosis
Authors: Anat Achiron
Abstract:
Background: Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system in young adults. It involves the immune system attacking the protective covering of nerve fibers (myelin), leading to inflammation and damage. MS can result in various neurological symptoms, such as muscle weakness, coordination problems, and sensory disturbances. Seizures are not common in MS, and the frequency is estimated between 0.4 to 6.4% over the disease course. Objective: Investigate the frequency of seizures in individuals with multiple sclerosis and to identify associated risk factors. Methods: We evaluated the frequency of seizures in a large cohort of 5686 MS patients followed at the Sheba Multiple Sclerosis Center and studied associated risk factors and comorbidities. Our research was based on data collection using a cohort study design. We applied logistic regression analysis to assess the strength of associations. Results: We found that younger age at onset, longer disease duration, and prolonged time to immunomodulatory treatment initiation were associated with increased risk for seizures. Conclusions: Our findings suggest that seizures in people with MS are directly related to the demyelination process and not associated with other factors like medication side effects or comorbid conditions. Therefore, initiating immunomodulatory treatment early in the disease course could reduce not only disease activity but also decrease seizure risk.Keywords: epilepsy, seizures, multiple sclerosis, white matter, age
Procedia PDF Downloads 743671 Demystifying the Power of Machine Learning in Detecting Alzheimer’s Disease through Speech Analysis: A Systematic Review
Authors: Dalia Elleuch
Abstract:
The use of machine learning in the field of healthcare has gained tremendous momentum in recent years, with the potential to revolutionize the way diseases are diagnosed and treated. In particular, the field of machine learning in the detection of degenerative diseases through language performance analysis has shown great promise and has been the subject of a growing body of research. As Alzheimer’s Disease (AD) is among the most prevalent neurodegenerative diseases, this review is designed to investigate the effectiveness of machine learning through speech analysis techniques to analyze linguistic data from patients with AD, with the goal of detecting early signs of the disease. A corpus comprising seven comparative studies with a total number of patients (n=1054) was analyzed. The finding reveals a high degree of accuracy, ranging between 83.32% and 97.18%. This systematic review sheds light on the potential of speech analysis and machine learning in the detection of AD, highlighting the need for further development and integration into clinical practice for improved patient outcomes.Keywords: machine learning, detection, neurodegenerative diseases, Alzheimer’s disease, speech analysis
Procedia PDF Downloads 33670 The Impact of Heat Waves on Human Health: State of Art in Italy
Authors: Vito Telesca, Giuseppina A. Giorgio
Abstract:
The earth system is subject to a wide range of human activities that have changed the ecosystem more rapidly and extensively in the last five decades. These global changes have a large impact on human health. The relationship between extreme weather events and mortality are widely documented in different studies. In particular, a number of studies have investigated the relationship between climatological variations and the cardiovascular and respiratory system. The researchers have become interested in the evaluation of the effect of environmental variations on the occurrence of different diseases (such as infarction, ischemic heart disease, asthma, respiratory problems, etc.) and mortality. Among changes in weather conditions, the heat waves have been used for investigating the association between weather conditions and cardiovascular events and cerebrovascular, using thermal indices, which combine air temperature, relative humidity, and wind speed. The effects of heat waves on human health are mainly found in the urban areas and they are aggravated by the presence of atmospheric pollution. The consequences of these changes for human health are of growing concern. In particular, meteorological conditions are one of the environmental aspects because cardiovascular diseases are more common among the elderly population, and such people are more sensitive to weather changes. In addition, heat waves, or extreme heat events, are predicted to increase in frequency, intensity, and duration with climate change. In this context, are very important public health and climate change connections increasingly being recognized by the medical research, because these might help in informing the public at large. Policy experts claim that a growing awareness of the relationships of public health and climate change could be a key in breaking through political logjams impeding action on mitigation and adaptation. The aims of this study are to investigate about the importance of interactions between weather variables and your effects on human health, focusing on Italy. Also highlighting the need to define strategies and practical actions of monitoring, adaptation and mitigation of the phenomenon.Keywords: climate change, illness, Italy, temperature, weather
Procedia PDF Downloads 2493669 Reminiscence Therapy for Alzheimer’s Disease Restrained on Logistic Regression Based Linear Bootstrap Aggregating
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Xianpei Li, Yanmin Yuan, Tracy Lin Huan
Abstract:
Researchers are doing enchanting research into the inherited features of Alzheimer’s disease and probable consistent therapies. In Alzheimer’s, memories are extinct in reverse order; memories formed lately are more transitory than those from formerly. Reminiscence therapy includes the conversation of past actions, trials and knowledges with another individual or set of people, frequently with the help of perceptible reminders such as photos, household and other acquainted matters from the past, music and collection of tapes. In this manuscript, the competence of reminiscence therapy for Alzheimer’s disease is measured using logistic regression based linear bootstrap aggregating. Logistic regression is used to envisage the experiential features of the patient’s memory through various therapies. Linear bootstrap aggregating shows better stability and accuracy of reminiscence therapy used in statistical classification and regression of memories related to validation therapy, supportive psychotherapy, sensory integration and simulated presence therapy.Keywords: Alzheimer’s disease, linear bootstrap aggregating, logistic regression, reminiscence therapy
Procedia PDF Downloads 3133668 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1463667 Better Defined WHO International Classification of Disease Codes for Relapsing Fever Borreliosis, and Lyme Disease Education Aiding Diagnosis, Treatment Improving Human Right to Health
Authors: Mualla McManus, Jenna Luche Thaye
Abstract:
World Health Organisation International Classification of Disease codes were created to define disease including infections in order to guide and educate diagnosticians. Most infectious diseases such as syphilis are clearly defined by their ICD 10 codes and aid/help to educate the clinicians in syphilis diagnosis and treatment globally. However, current ICD 10 codes for relapsing fever Borreliosis and Lyme disease are less clearly defined and can impede appropriate diagnosis especially if the clinician is not familiar with the symptoms of these infectious diseases. This is despite substantial number of scientific articles published in peer-reviewed journals about relapsing fever and Lyme disease. In the USA there are estimated 380,000 people annually contacting Lyme disease, more cases than breast cancer and 6x HIV/AIDS cases. This represents estimated 0.09% of the USA population. If extrapolated to the global population (7billion), 0.09% equates to 63 million people contracting relapsing fever or Lyme disease. In many regions, the rate of contracting some form of infection from tick bite may be even higher. Without accurate and appropriate diagnostic codes, physicians are impeded in their ability to properly care for their patients, leaving those patients invisible and marginalized within the medical system and to those guiding public policy. This results in great personal hardship, pain, disability, and expense. This unnecessarily burdens health care systems, governments, families, and society as a whole. With accurate diagnostic codes in place, robust data can guide medical and public health research, health policy, track mortality and save health care dollars. Better defined ICD codes are the way forward in educating the diagnosticians about relapsing fever and Lyme diseases.Keywords: WHO ICD codes, relapsing fever, Lyme diseases, World Health Organisation
Procedia PDF Downloads 1983666 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model
Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi
Abstract:
The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.Keywords: Besag2, CAR models, disease mapping, INLA, spatial models
Procedia PDF Downloads 2843665 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window
Procedia PDF Downloads 933664 Analysis of Cardiovascular Diseases Using Artificial Neural Network
Authors: Jyotismita Talukdar
Abstract:
In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach
Procedia PDF Downloads 1783663 Impact of Tourists on HIV (Human Immunodeficiency Virus) Incidence
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
Recently tourism is a major foreign exchange earner in the World. In this paper, we propose the mathematical model to study the impact of tourists on the spread of HIV incidences using compartmental differential equation models. Simulation studies of reproduction number are used to demonstrate new insights on the spread of HIV disease. The periodogram analysis of a time series was used to determine the speed at which the disease is spread. The results indicate that with the persistent flow of tourism into a country, the disease status has increased the epidemic rate. The result suggests that the government must put more control on illegal prostitution, unprotected sexual activity as well as to emphasis on prevention policies that include the safe sexual activity through the campaign by the tourism board.Keywords: HIV/AIDS, mathematical transmission modeling, tourists, stability, simulation
Procedia PDF Downloads 3953662 Clinical Profile of Renal Diseases in Children in Tertiary Care Centre
Authors: Jyoti Agrawal
Abstract:
Introduction: Renal diseases in children and young adult can be difficult to diagnose early as it may present only with few symptoms, tends to have different course than adult and respond variously to different treatment. The pattern of renal disease in children is different from developing countries as compared to developed countries. Methods: This study was a hospital based prospective observational study carried from March, 2014 to February 2015 at BP Koirala institute of health sciences. Patients with renal disease, both inpatient and outpatient from birth to 14 years of age were enrolled in the study. The diagnosis of renal disease was be made on clinical and laboratory criteria. Results: Total of 120 patients were enrolled in our study which contributed to 3.74% % of total admission. The commonest feature of presentation was edema (75%), followed by fever (65%), hypertension (60%), decreased urine output (45%) and hematuria (25%). Most common diagnosis was acute glomerulonephritis (40%) followed by Nephrotic syndrome (25%) and urinary tract infection (25%). Renal biopsy was done for 10% of cases and most of them were steroid dependent nephrotic syndrome. 5% of our cases expired because of multiorgan dysfunction syndrome, sepsis and acute kidney injury. Conclusion: Renal disease contributes to a large part of hospital pediatric admission as well as mortality and morbidity to the children.Keywords: glomerulonephritis, nephrotic syndrome, renal disease, urinary tract infection
Procedia PDF Downloads 4283661 Family Satisfaction with Neuro-Linguistic Care for Patients with Alzheimer’s Disease
Authors: Sara Sahraoui
Abstract:
This research studied the effect of Alzheimer's disease (AD) on language information processing in subjects with Alzheimer’s disease (AD) who were bilingual (French and dialectical Arabic). The results show a disorder of certain semantic aspects of their mother tongue (L1). On the other hand, grammatical levels appeared to be relatively unaffected in oral speech in L1 but were disturbed in the second language (L2). In consequence, we constructed a cognitive-language stimulation protocol for bilingual patients (PSCLAB) to respond to this disorder. The efficacy of this protocol in terms of rehabilitation was assessed in 30 such patients through discourse analysis carried out before and after initiating the protocol. The results show that cognitive/language training using the PSCLAB appears to improve the language behaviour of bilingual patients with AD. However, this survey study aims to verify the satisfaction of patients’ relatives with the results of cognitive language training by PSCLAB. We developed a brief instrument to measure the satisfaction of family members. The results report that the patient's relatives are satisfied with the results of cognitive training by PSCLAB.Keywords: satisfaction, Alzheimer's disease, rehabilitation, levels language
Procedia PDF Downloads 843660 Expression of ACSS2 Genes in Peripheral Blood Mononuclear Cells of Patients with Alzheimer’s Disease
Authors: Ali Bayram, Burak Uz, Remzi Yiğiter
Abstract:
The impairment of lipid metabolism in the central nervous system has been suggested as a critical factor of Alzheimer’s disease (AD) pathogenesis. Homo sapiens acyl-coenyme A synthetase short-chain family member 2 (ACSS2) gene encodes the enzyme acetyl-Coenzyme A synthetase (AMP forming; AceCS) providing acetyl-coenzyme A (Ac-CoA) for various physiological processes, such as cholesterol and fatty acid synthesis, as well as the citric acid cycle. We investigated ACSS2, transcript variant 1 (ACSS2*1), mRNA levels in the peripheral blood mononuclear cells (PBMC) of patients with AD and compared them with the controls. The study group comprised 50 patients with the diagnosis of AD who have applied to Gaziantep University Faculty of Medicine, and Department of Neurology. 49 healthy individuals without any neurodegenerative disease are included as controls. ACSS2 mRNA expression in PBMC of AD/control patients was 0.495 (95% confidence interval: 0.410-0.598), p= .000000001902). Further studies are needed to better clarify this association.Keywords: Alzheimer’s disease, ACSS2 Genes, mRNA expression, RT-PCR
Procedia PDF Downloads 3943659 Identification of Potential Small Molecule Regulators of PERK Kinase
Authors: Ireneusz Majsterek, Dariusz Pytel, J. Alan Diehl
Abstract:
PKR-like ER kinase (PERK) is serine/threonie endoplasmic reticulum (ER) transmembrane kinase activated during ER-stress. PERK can activate signaling pathways known as unfolded protein response (UPR). Attenuation of translation is mediated by PERK via phosphorylation of eukaryotic initiation factor 2α (eIF2α), which is necessary for translation initiation. PERK activation also directly contributes to activation of Nrf2 which regulates expression of anti-oxidant enzymes. An increased phosphorylation of eIF2α has been reported in Alzheimer disease (AD) patient hippocampus, indicating that PERK is activated in this disease. Recent data have revealed activation of PERK signaling in non-Hodgkins lymphomas. Results also revealed that loss of PERK limits mammary tumor cell growth in vitro and in vivo. Consistent with these observations, activation of UPR in vitro increases levels of the amyloid precursor protein (APP), the peptide from which beta-amyloid plaques (AB) fragments are derived. Finally, proteolytic processing of APP, including the cleavages that produce AB, largely occurs in the ER, and localization coincident with PERK activity. Thus, we expect that PERK-dependent signaling is critical for progression of many types of diseases (human cancer, neurodegenerative disease and other). Therefore, modulation of PERK activity may be a useful therapeutic target in the treatment of different diseases that fail to respond to traditional chemotherapeutic strategies, including Alzheimer’s disease. Our goal will be to developed therapeutic modalities targeting PERK activity.Keywords: PERK kinase, small molecule inhibitor, neurodegenerative disease, Alzheimer’s disease
Procedia PDF Downloads 4843658 Spray-Dried, Biodegradable, Drug-Loaded Microspheres for Use in the Treatment of Lung Diseases
Authors: Mazen AlGharsan
Abstract:
Objective: The Carbopol Microsphere of Linezolid, a drug used to treat lung disease (pulmonary disease), was prepared using Buchi B-90 nano spray-drier. Methods: Production yield, drug content, external morphology, particle size, and in vitro release pattern were performed. Results: The work was 79.35%, and the drug content was 66.84%. The surface of the particles was shriveled in shape, with particle size distribution with a mean diameter of 9.6 µm; the drug was released in a biphasic manner with an initial release of 25.2 ± 5.7% at 60 minutes. It later prolonged the release by 95.5 ± 2.5% up to 12 hours. Differential scanning calorimetry (DSC) revealed no change in the melting point of the formulation. Fourier-transform infrared (FT-IR) studies showed no polymer-drug interaction in the prepared nanoparticles.Keywords: nanotechnology, drug delivery, Linezolid, lung disease
Procedia PDF Downloads 183657 Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination
Authors: Djamila Meghraoui, Bachir Boudraa, Thouraya Meksen, M.Boudraa
Abstract:
Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising.Keywords: Parkinson’s disease recognition, PCA, MDVP, multinomial Naive Bayes
Procedia PDF Downloads 2823656 Susceptibility Assessment and Genetic Diversity of Iranian and CIMMYT Wheat Genotypes to Common Root Rot Disease Bipolaris sorokiniana
Authors: Mehdi Nasr Esfahani, Abdal-Rasool Gholamalian, Abdelfattah A. Dababat
Abstract:
Wheat, Triticum aestivum L. is one of the most important and strategic crops in the human diet. Several diseases threaten this particular crop. Common root rot disease of wheat by a fungal agent, Bipolaris sorokiniana is one of the important diseases, causing considerable losses worldwide. Resistant sources are the only feasible and effective method of control for managing diseases. In this study, the response of 33 domestic and exotic wheat genotypes, including cultivars and promising lines were screened to B. sorokiniana at greenhouse and field conditions, based on five scoring scale indexes of 0 to 100 severity percentage. The screening was continued on resistant wheat genotypes and repeated several times to confirm the greenhouse and field results. Statistical and cluster analysis of data was performed using SAS and SPSS software, respectively. The results showed that, the response of wheat genotypes to the disease in the greenhouse and field conditions was highly significant. The highest rate of common root rot disease infection, B. sorokiniana in the greenhouse and field, was of CVS. Karkheh and Beck Cross-Roshan with 60.83% and 59.16% disease severity respectively, and the lowest one were in cv. Alvand with 18.33%, followed by cv. Baharan with 19.16% disease severity, with a highly significant difference respectively. The remaining wheat genotypes were located in between these two highest and lowest infected groups to B. sorokiniana significantly. There was a high correlation coefficient between the related statistical groups and cluster analysis.Keywords: wheat, rot, root, crown, fungus, genotype, resistance
Procedia PDF Downloads 1383655 Early Detection of Kidney Failure by Using a Distinct Technique for Sweat Analysis
Authors: Saba. T. Suliman, Alaa. H. Osman, Sara. T. Ahmed, Zeinab. A. Mustafa, Akram. I. Omara, Banazier. A. Ibraheem
Abstract:
Diagnosis by sweat is one of the emerging methods whereby sweat can identify many diseases in the human body. Sweat contains many elements that help in the diagnostic process. In this research, we analyzed sweat samples by using a Colorimeter device to identify the disease of kidney failure in its various stages. This analysis is a non-invasive method where the sample is collected from outside the body, and then this sample is analyzed. Urea refers to the disease of kidney failure when its quantity is high in the blood and then in the sweat, and by experience, we found that the amount of urea for males differs from its quantity for females, where there is a noticeable increase for males in normal and pathological cases. In this research, we took many samples from a normal group that does not suffer from renal failure and another who suffers from the disease to compare the percentage of urea, and after analysis, we found that the urea percentage is high in people with kidney failure disease. with an accuracy of results of 85%.Keywords: sweat analysis, kidney failure, urea, non-invasive, eccrine glands, mineral composition, sweat test
Procedia PDF Downloads 473654 Prevalence of Autoimmune Thyroid Disease in Recurrent Aphthous Stomatitis
Authors: Arghavan Tonkaboni, Shamsolmolouk Najafi, Mohmmad Taghi Kiani, Mehrzad Gholampour, Touraj Goli
Abstract:
Introduction: Recurrent aphthous stomatitis (RAS) is a multifactorial recurrent oral lesion; which is an autoimmune disease. TH1 cytokines are the most important etiological factors. Autoimmune thyroid disease (ATD) is one of the most common autoimmune diseases and generally coexists with other autoimmune diseases. This study assessed the prevalence of thyroid disease in patients with recurrent aphthous stomatitis. Materials and Methods: This case control study assessed 100 known RAS patients who were diagnosed clinically by oral medicine specialists; venous blood samples were analyzed for thyroid stimulating hormone (TSH), free triiodothyronine (fT3), total thyroxine (fT4), thyroglobulin, anti-thyroid peroxidase antibody (anti-TPO) and anti-thyroglobulin antibody (anti-TG) levels. Results: Fifty patients with RAS aged between 18-42 years (28.5±5.8) and 50 healthy volunteers aged 19-45 years (27.3±5.4) participated. In RAS patients, fT3 and TSH levels were significantly higher (P=0.031, P=0.706); however, fT4 level was lower in the RAS group (P=0.447). Anti TG and anti-TPO levels were significantly higher in the RAS group (P=0.008, P=0.067). Conclusion: Our study showed that ATD prevalence was significantly higher in RAS patients. Based on this study, we recommend assessment of thyroid hormones and antibodies in RAS patients.Keywords: recurrent aphthous stomatitis, thyroid antibodies, thyroid hormone, thyroid autoimmune disease
Procedia PDF Downloads 3463653 The Importance of Clinicopathological Features for Differentiation Between Crohn's Disease and Ulcerative Colitis
Authors: Ghada E. Esheba, Ghadeer F. Alharthi, Duaa A. Alhejaili, Rawan E. Hudairy, Wafaa A. Altaezi, Raghad M. Alhejaili
Abstract:
Background: Inflammatory bowel disease (IBD) consists of two specific gastrointestinal disorders: ulcerative colitis (UC) and Crohn's disease (CD). Despite their distinct natures, these two diseases share many similar etiologic, clinical and pathological features, as a result, their accurate differential diagnosis may sometimes be difficult. Correct diagnosis is important because surgical treatment and long-term prognosis differ from UC and CD. Aim: This study aims to study the characteristic clinicopathological features which help in the differential diagnosis between UC and CD, and assess the disease activity in ulcerative colitis. Materials and methods: This study was carried out on 50 selected cases. The cases included 27 cases of UC and 23 cases of CD. All the cases were examined using H& E and immunohistochemically for bcl-2 expression. Results: Characteristic features of UC include: decrease in mucous content, irregular or villous surface, crypt distortion, and cryptitis, whereas the main cardinal histopathological features seen in CD were: epitheloid granuloma, transmural chronic inflammation, absence of mucin depletion, irregular surface, or crypt distortion. 3 cases of UC were found to be associated with dysplasia. UC mucosa contains fewer Bcl-2+ cells compared with CD mucosa. Conclusion: This study using multiple parameters such clinicopathological features and Bcl-2 expression as studied by immunohistochemical stain, helped to gain an accurate differentiation between UC and CD. Furthermore, this work spotted the light on the activity and different grades of UC which could be important for the prediction of relapse.Keywords: Crohn's disease, dysplasia, inflammatory bowel disease, ulcerative colitis
Procedia PDF Downloads 1933652 Cost Analysis of Neglected Tropical Disease in Nigeria: Implication for Programme Control and Elimination
Authors: Lawong Damian Bernsah
Abstract:
Neglected Tropical Diseases (NTDs) are most predominant among the poor and rural populations and are endemic in 149 countries. These diseases are the most prevalent and responsible for infecting 1.4 billion people worldwide. There are 17 neglected tropical diseases recognized by WHO that constitute the fourth largest disease health and economic burden of all communicable diseases. Five of these 17 diseases are considered for the cost analysis of this paper: lymphatic filariasis, onchocerciasis, trachoma, schistosomiasis, and soil transmitted helminth infections. WHO has proposed a roadmap for eradication and elimination by 2020 and treatments have been donated through the London Declaration by pharmaceutical manufacturers. The paper estimates the cost of NTD control programme and elimination for each NTD disease and total in Nigeria. This is necessary as it forms the bases upon which programme budget and expenditure could be based. Again, given the opportunity cost the resources for NTD face it is necessary to estimate the cost so as to provide bases for comparison. Cost of NTDs control and elimination programme is estimated using the population at risk for each NTD diseases and for the total. The population at risk is gotten from the national master plan for the 2015 - 2020, while the cost per person was gotten for similar studies conducted in similar settings and ranges from US$0.1 to US$0.5 for Mass Administration of Medicine (MAM) and between US$1 to US$1.5 for each NTD disease. The combined cost for all the NTDs was estimated to be US$634.88 million for the period 2015-2020 and US$1.9 billion for each NTD disease for the same period. For the purpose of sensitivity analysis and for robustness of the analysis the cost per person was varied and all were still high. Given that health expenditure for Nigeria (% of GDP) averages 3.5% for the period 1995-2014, it is very clear that efforts have to be made to improve allocation to the health sector in general which is hoped could trickle to NTDs control and elimination. Thus, the government and the donor partners would need to step-up budgetary allocation and also to be aware of the costs of NTD control and elimination programme since they have alternative uses. Key Words: Neglected Tropical Disease, Cost Analysis, NTD Programme Control and Elimination, Cost per PersonKeywords: Neglected Tropical Disease, Cost Analysis, Neglected Tropical Disease Programme Control and Elimination, Cost per Person
Procedia PDF Downloads 2763651 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey
Authors: Lavanya Madhuri Bollipo, K. V. Kadambari
Abstract:
Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)
Procedia PDF Downloads 4023650 Decision Support System for Diagnosis of Breast Cancer
Authors: Oluwaponmile D. Alao
Abstract:
In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.Keywords: breast cancer, data mining, neural network, support vector machine
Procedia PDF Downloads 3483649 Modeling and Optimal Control of Pneumonia Disease with Cost Effective Strategies
Authors: Getachew Tilahun, Oluwole Makinde, David Malonza
Abstract:
We propose and analyze a non-linear mathematical model for the transmission dynamics of pneumonia disease in a population of varying size. The deterministic compartmental model is studied using stability theory of differential equations. The effective reproduction number is obtained and also the local and global asymptotically stability conditions for the disease free and as well as for the endemic equilibria are established. The model exhibit a backward bifurcation and the sensitivity indices of the basic reproduction number to the key parameters are determined. Using Pontryagin’s maximum principle, the optimal control problem is formulated with three control strategies; namely disease prevention through education, treatment and screening. The cost effectiveness analysis of the adopted control strategies revealed that the combination of prevention and treatment is the most cost effective intervention strategies to combat the pneumonia pandemic. Numerical simulation is performed and pertinent results are displayed graphically.Keywords: cost effectiveness analysis, optimal control, pneumonia dynamics, stability analysis, numerical simulation
Procedia PDF Downloads 3293648 Dietary Habits and Cardiovascular Risk factors Among the Patients of the Coronary Artery Disease: A Case Control Study
Authors: Muhammad Kamran Hanif Khan, Fahad Mushtaq
Abstract:
Globally, the death rate from cardiovascular disease has risen over the past 20 years, but especially in low and middle-income countries (LMICS), reports the World Health Organization (WHO). Around 17.5 million deaths, or 31% of all deaths worldwide in 2012, were attributed to CVD, 80% of which occurred in low- and middle-income nations, and eighty five percent of all worldwide disability is attributable to cardiovascular disease. This study assessed the dietary habit and Cardiovascular Risk factors among the patients of coronary artery disease against matched controls. The research was a case-control study. Sample size for this case-control study was 410 CAD cases and 410 healthy controls. The case-control ratio was 1:1. Patients diagnosed with coronary artery disease were recruited from the outpatient departments and emergency rooms of four hospitals in Pakistan. The ages of people who were diagnosed with coronary artery disease were not significantly different from (mean 57.97 7.39 years) the healthy controls (mean 57.12 6.73 years). In order to determine the relationship between food consumption and the two binary outcomes, logistic regression analysis was carried out. Chicken (0.340 (0.245-0.47), p-value 0.0001), beef (0.38 (0.254-0.56), p-value 0.0001), eggs (0.297 (0.208-0.426), p-value 0.0001), and junk food (0.249 (0.167-0.372), p-value 0.0001)) were protective, while yogurt consumption more than twice weekly was risk. Conclusion: In conclusion, poor dietary habits are closely linked to the risk of CAD. Investigations based on dietary trends offer vital and practical knowledge about societal patterns.Keywords: dietary habbits, cardiovasculardisease, CVD risk factors, hypercholesterolemia
Procedia PDF Downloads 843647 Progression Rate, Prevalence, Incidence of Black Band Disease on Stony (Scleractinia) in Barranglompo Island, South Sulawesi
Authors: Baso Hamdani, Arniati Massinai, Jamaluddin Jompa
Abstract:
Coral diseases are one of the factors affect reef degradation. This research had analysed the progression rate, incidence, and prevalence of Black Band Disease (BBD) on stony coral (Pachyseris sp.) in relation to the environmental parameters (pH, nitrate, phospate, Dissolved Organic Matter (DOM), and turbidity). The incidence of coral disease was measured weekly for 6 weeks using Belt Transect Method. The progression rate of BBD was measured manually. Furthermore, the prevalence and incidence of BBD were calculated each colonies infected. The relationship between environmental parameters and the progression rate, prevalence and incidence of BBD was analysed by Principal Component Analysis (PCA). The results showed the average of progression rate is 0,07 ± 0,02 cm/ hari. The prevalence of BBD increased from 0,92% - 19,73% in 7 weeks observation with the average incidence of new infected colonies coral 0,2 - 0,65 colony/day The environment factors which important were pH, Nitrate, Phospate, DOM, and Turbidity.Keywords: progression rate, incidence, prevalence, Black Band Disease, Barranglompo
Procedia PDF Downloads 6493646 An Audit of the Process of Care in Surveillance Services for Children with Sickle Cell Disease in Wales
Authors: Charlie Jeffkins
Abstract:
Sickle cell disease is a serious life-limiting condition which can reduce the quality of life for many patients. Public Health England (PHE), in partnership with the Sickle Cell Society (SCS), has created guidelines to prevent severe complications from sickle cell disease. Data was collected from Children’s Hospital for Wales between 15/03/21-26/03/21. Methods: A manual search of patient records for children under the care of Rocket Ward and a key term search of online records was used. Results: Penicillin prophylaxis was given at 90 days for 89%, 77% of TCDs scans were done at 2-3 years, and 72% have had a scan in the last year. 53% of patients have had discussions about hydroxycarbamide, whilst 65% have started it. PPV vaccination was documented for 19%. Conclusion: Overall, none of the four standards were reached; however, TCD uptake has improved. There is a need for better documentation of treatment and annual re-audits.Keywords: paediatric, haematology, sickle cell, audit
Procedia PDF Downloads 230