Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87765
Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination
Authors: Djamila Meghraoui, Bachir Boudraa, Thouraya Meksen, M.Boudraa
Abstract:
Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising.Keywords: Parkinson’s disease recognition, PCA, MDVP, multinomial Naive Bayes
Procedia PDF Downloads 279