Search results for: automated monitoring system.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20072

Search results for: automated monitoring system.

18962 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio

Authors: O. S. Omorogiuwa, E. J. Omozusi

Abstract:

The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.

Keywords: spectrum, interference, telecommunication, cognitive radio, frequency

Procedia PDF Downloads 226
18961 The Future Control Rooms for Sustainable Power Systems: Current Landscape and Operational Challenges

Authors: Signe Svensson, Remy Rey, Anna-Lisa Osvalder, Henrik Artman, Lars Nordström

Abstract:

The electric power system is undergoing significant changes. Thereby, the operation and control are becoming partly modified, more multifaceted and automated, and thereby supplementary operator skills might be required. This paper discusses developing operational challenges in future power system control rooms, posed by the evolving landscape of sustainable power systems, driven in turn by the shift towards electrification and renewable energy sources. A literature review followed by interviews and a comparison to other related domains with similar characteristics, a descriptive analysis was performed from a human factors perspective. Analysis is meant to identify trends, relationships, and challenges. A power control domain taxonomy includes a temporal domain (planning and real-time operation) and three operational domains within the power system (generation, switching and balancing). Within each operational domain, there are different control actions, either in the planning stage or in the real-time operation, that affect the overall operation of the power system. In addition to the temporal dimension, the control domains are divided in space between a multitude of different actors distributed across many different locations. A control room is a central location where different types of information are monitored and controlled, alarms are responded to, and deviations are handled by the control room operators. The operators’ competencies, teamwork skills, team shift patterns as well as control system designs are all important factors in ensuring efficient and safe electricity grid management. As the power system evolves with sustainable energy technologies, challenges are found. Questions are raised regarding whether the operators’ tacit knowledge, experience and operation skills of today are sufficient to make constructive decisions to solve modified and new control tasks, especially during disturbed operations or abnormalities. Which new skills need to be developed in planning and real-time operation to provide efficient generation and delivery of energy through the system? How should the user interfaces be developed to assist operators in processing the increasing amount of information? Are some skills at risk of being lost when the systems change? How should the physical environment and collaborations between different stakeholders within and outside the control room develop to support operator control? To conclude, the system change will provide many benefits related to electrification and renewable energy sources, but it is important to address the operators’ challenges with increasing complexity. The control tasks will be modified, and additional operator skills are needed to perform efficient and safe operations. Also, the whole human-technology-organization system needs to be considered, including the physical environment, the technical aids and the information systems, the operators’ physical and mental well-being, as well as the social and organizational systems.

Keywords: operator, process control, energy system, sustainability, future control room, skill

Procedia PDF Downloads 96
18960 A Sliding Model Control for a Hybrid Hyperbolic Dynamic System

Authors: Xuezhang Hou

Abstract:

In the present paper, a hybrid hyperbolic dynamic system formulated by partial differential equations with initial and boundary conditions is considered. First, the system is transformed to an abstract evolution system in an appropriate Hilbert space, and spectral analysis and semigroup generation of the system operator is discussed. Subsequently, a sliding model control problem is proposed and investigated, and an equivalent control method is introduced and applied to the system. Finally, a significant result that the state of the system can be approximated by an ideal sliding mode under control in any accuracy is derived and examined.

Keywords: hyperbolic dynamic system, sliding model control, semigroup of linear operators, partial differential equations

Procedia PDF Downloads 137
18959 Long-Term Monitoring and Seasonal Analysis of PM10-Bound Benzo(a)pyrene in the Ambient Air of Northwestern Hungary

Authors: Zs. Csanádi, A. Szabó Nagy, J. Szabó, J. Erdős

Abstract:

Atmospheric aerosols have several important environmental impacts and health effects in point of air quality. Monitoring the PM10-bound polycyclic aromatic hydrocarbons (PAHs) could have important environmental significance and health protection aspects. Benzo(a)pyrene (BaP) is the most relevant indicator of these PAH compounds. In Hungary, the Hungarian Air Quality Network provides air quality monitoring data for several air pollutants including BaP, but these data show only the annual mean concentrations and maximum values. Seasonal variation of BaP concentrations comparing the heating and non-heating periods could have important role and difference as well. For this reason, the main objective of this study was to assess the annual concentration and seasonal variation of BaP associated with PM10 in the ambient air of Northwestern Hungary seven different sampling sites (six urban and one rural) in the sampling period of 2008–2013. A total of 1475 PM10 aerosol samples were collected in the different sampling sites and analyzed for BaP by gas chromatography method. The BaP concentrations ranged from undetected to 8 ng/m3 with the mean value range of 0.50-0.96 ng/m3 referring to all sampling sites. Relatively higher concentrations of BaP were detected in samples collected in each sampling site in the heating seasons compared with non-heating periods. The annual mean BaP concentrations were comparable with the published data of the other Hungarian sites.

Keywords: air quality, benzo(a)pyrene, PAHs, polycyclic aromatic hydrocarbons

Procedia PDF Downloads 308
18958 Acoustic Emission for Tool-Chip Interface Monitoring during Orthogonal Cutting

Authors: D. O. Ramadan, R. S. Dwyer-Joyce

Abstract:

The measurement of the interface conditions in a cutting tool contact is essential information for performance monitoring and control. This interface provides the path for the heat flux to the cutting tool. This elevate in the cutting tool temperature leads to motivate the mechanism of tool wear, thus affect the life of the cutting tool and the productivity. This zone is representative by the tool-chip interface. Therefore, understanding and monitoring this interface is considered an important issue in machining. In this paper, an acoustic emission (AE) technique was used to find the correlation between AE parameters and the tool-chip interface. For this reason, a response surface design (RSD) has been used to analyse and optimize the machining parameters. The experiment design was based on the face centered, central composite design (CCD) in the Minitab environment. According to this design, a series of orthogonal cutting experiments for different cutting conditions were conducted on a Triumph 2500 lathe machine to study the sensitivity of the acoustic emission (AE) signal to change in tool-chip contact length. The cutting parameters investigated were the cutting speed, depth of cut, and feed and the experiments were performed for 6082-T6 aluminium tube. All the orthogonal cutting experiments were conducted unlubricated. The tool-chip contact area was investigated using a scanning electron microscope (SEM). The results obtained in this paper indicate that there is a strong dependence of the root mean square (RMS) on the cutting speed, where the RMS increases with increasing the cutting speed. A dependence on the tool-chip contact length has been also observed. However there was no effect observed of changing the cutting depth and feed on the RMS. These dependencies have been clarified in terms of the strain and temperature in the primary and secondary shear zones, also the tool-chip sticking and sliding phenomenon and the effect of these mechanical variables on dislocation activity at high strain rates. In conclusion, the acoustic emission technique has the potential to monitor in situ the tool-chip interface in turning and consequently could indicate the approaching end of life of a cutting tool.

Keywords: Acoustic emission, tool-chip interface, orthogonal cutting, monitoring

Procedia PDF Downloads 488
18957 Procedure for Monitoring the Process of Behavior of Thermal Cracking in Concrete Gravity Dams: A Case Study

Authors: Adriana de Paula Lacerda Santos, Bruna Godke, Mauro Lacerda Santos Filho

Abstract:

Several dams in the world have already collapsed, causing environmental, social and economic damage. The concern to avoid future disasters has stimulated the creation of a great number of laws and rules in many countries. In Brazil, Law 12.334/2010 was created, which establishes the National Policy on Dam Safety. Overall, this policy requires the dam owners to invest in the maintenance of their structures and to improve its monitoring systems in order to provide faster and straightforward responses in the case of an increase of risks. As monitoring tools, visual inspections has provides comprehensive assessment of the structures performance, while auscultation’s instrumentation has added specific information on operational or behavioral changes, providing an alarm when a performance indicator exceeds the acceptable limits. These limits can be set using statistical methods based on the relationship between instruments measures and other variables, such as reservoir level, time of the year or others instruments measuring. Besides the design parameters (uplift of the foundation, displacements, etc.) the dam instrumentation can also be used to monitor the behavior of defects and damage manifestations. Specifically in concrete gravity dams, one of the main causes for the appearance of cracks, are the concrete volumetric changes generated by the thermal origin phenomena, which are associated with the construction process of these structures. Based on this, the goal of this research is to propose a monitoring process of the thermal cracking behavior in concrete gravity dams, through the instrumentation data analysis and the establishment of control values. Therefore, as a case study was selected the Block B-11 of José Richa Governor Dam Power Plant, that presents a cracking process, which was identified even before filling the reservoir in August’ 1998, and where crack meters and surface thermometers were installed for its monitoring. Although these instruments were installed in May 2004, the research was restricted to study the last 4.5 years (June 2010 to November 2014), when all the instruments were calibrated and producing reliable data. The adopted method is based on simple linear correlations procedures to understand the interactions among the instruments time series, verifying the response times between them. The scatter plots were drafted from the best correlations, which supported the definition of the limit control values. Among the conclusions, it is shown that there is a strong or very strong correlation between ambient temperature and the crack meters and flowmeters measurements. Based on the results of the statistical analysis, it was possible to develop a tool for monitoring the behavior of the case study cracks. Thus it was fulfilled the goal of the research to develop a proposal for a monitoring process of the behavior of thermal cracking in concrete gravity dams.

Keywords: concrete gravity dam, dams safety, instrumentation, simple linear correlation

Procedia PDF Downloads 292
18956 Coherent All-Fiber and Polarization Maintaining Source for CO2 Range-Resolved Differential Absorption Lidar

Authors: Erwan Negre, Ewan J. O'Connor, Juha Toivonen

Abstract:

The need for CO2 monitoring technologies grows simultaneously with the worldwide concerns regarding environmental challenges. To that purpose, we developed a compact coherent all-fiber ranged-resolved Differential Absorption Lidar (RR-DIAL). It has been designed along a tunable 2x1fiber optic switch set to a frequency of 1 Hz between two Distributed FeedBack (DFB) lasers emitting in the continuous-wave mode at 1571.41 nm (absorption line of CO2) and 1571.25 nm (CO2 absorption-free line), with linewidth and tuning range of respectively 1 MHz and 3 nm over operating wavelength. A three stages amplification through Erbium and Erbium-Ytterbium doped fibers coupled to a Radio Frequency (RF) driven Acousto-Optic Modulator (AOM) generates 100 ns pulses at a repetition rate from 10 to 30 kHz with a peak power up to 2.5 kW and a spatial resolution of 15 m, allowing fast and highly resolved CO2 profiles. The same afocal collection system is used for the output of the laser source and the backscattered light which is then directed to a circulator before being mixed with the local oscillator for heterodyne detection. Packaged in an easily transportable box which also includes a server and a Field Programmable Gate Array (FPGA) card for on-line data processing and storing, our setup allows an effective and quick deployment for versatile in-situ analysis, whether it be vertical atmospheric monitoring, large field mapping or sequestration site continuous oversight. Setup operation and results from initial field measurements will be discussed.

Keywords: CO2 profiles, coherent DIAL, in-situ atmospheric sensing, near infrared fiber source

Procedia PDF Downloads 128
18955 Monitoring of Potato Rot Nematode (Ditylenchus destructor Thorne, 1945) in Southern Georgia Nematode Fauna Diversity of Rhizosphere

Authors: E. Tskitishvili, L. Jgenti, I. Eliava, T. Tskitishvili, N. Bagathuria, M. Gigolashvili

Abstract:

The nematode fauna of 20 agrocenosis (soil, tuber of potato, green parts of plant, roots) was studied in four regions in South Georgia (Akhaltsikhe, Aspindza, Akhalkalaki, Ninotsminda). In all, there were registered 173 forms of free-living and Phyto-parasitic nematodes, including 132 forms which were specified according to their species. A few exemplars of potato root nematode (Ditylenchus destructor) were identified in soil samples taken in Ninotsminda, Akhalkalaki and Aspinda stations, i.e. invasion is weak. Based on our data, potato Ditylenchus was not found in any of the researched tubers, while based on the data of previous years the most of tubers were infested. The cysts of 'golden nematodes' were not found during inspection of material for detection of Globoderosis

Keywords: ditylenchus, monitoring, nematoda, potato

Procedia PDF Downloads 357
18954 An Integrated Web-Based Workflow System for Design of Computational Pipelines in the Cloud

Authors: Shuen-Tai Wang, Yu-Ching Lin

Abstract:

With more and more workflow systems adopting cloud as their execution environment, it presents various challenges that need to be addressed in order to be utilized efficiently. This paper introduces a method for resource provisioning based on our previous research of dynamic allocation and its pipeline processes. We present an abstraction for workload scheduling in which independent tasks get scheduled among various available processors of distributed computing for optimization. We also propose an integrated web-based workflow designer by taking advantage of the HTML5 technology and chaining together multiple tools. In order to make the combination of multiple pipelines executing on the cloud in parallel, we develop a script translator and an execution engine for workflow management in the cloud. All information is known in advance by the workflow engine and tasks are allocated according to the prior knowledge in the repository. This proposed effort has the potential to provide support for process definition, workflow enactment and monitoring of workflow processes. Users would benefit from the web-based system that allows creation and execution of pipelines without scripting knowledge.

Keywords: workflow systems, resources provisioning, workload scheduling, web-based, workflow engine

Procedia PDF Downloads 160
18953 Monitoring Land Productivity Dynamics of Gombe State, Nigeria

Authors: Ishiyaku Abdulkadir, Satish Kumar J

Abstract:

Land Productivity is a measure of the greenness of above-ground biomass in health and potential gain and is not related to agricultural productivity. Monitoring land productivity dynamics is essential to identify, especially when and where the trend is characterized degraded for mitigation measures. This research aims to monitor the land productivity trend of Gombe State between 2001 and 2015. QGIS was used to compute NDVI from AVHRR/MODIS datasets in a cloud-based method. The result appears that land area with improving productivity account for 773sq.km with 4.31%, stable productivity traced to 4,195.6 sq.km with 23.40%, stable but stressed productivity represent 18.7sq.km account for 0.10%, early sign of decline productivity occupied 5203.1sq.km with 29%, declining productivity account for 7019.7sq.km, represent 39.2%, water bodies occupied 718.7sq.km traced to 4% of the state’s area.

Keywords: above-ground biomass, dynamics, land productivity, man-environment relationship

Procedia PDF Downloads 145
18952 Overcoming the Problems Affecting Drip Irrigation System through the Design of an Efficient Filtration and Flushing System

Authors: Stephen A. Akinlabi, Esther T. Akinlabi

Abstract:

The drip irrigation system is one of the important areas that affect the livelihood of farmers directly. The use of drip irrigation system has been the most efficient system compared to the other types of irrigations systems because the drip irrigation helps to save water and increase the productivity of crops. But like any other system, it can be considered inefficient when the filters and the emitters get clogged while in operation. The efficiency of the entire system is reduced when the emitters are clogged and blocked. This consequently impact and affect the farm operations which may result in scarcity of farm products and increase the demand. This design work focuses on how to overcome some of the challenges affecting drip irrigation system through the design of an efficient filtration and flushing system.

Keywords: drip irrigation system, filters, soil texture, mechanical engineering design, analysis

Procedia PDF Downloads 386
18951 Evolution of Floating Photovoltaic System Technology and Future Prospect

Authors: Young-Kwan Choi, Han-Sang Jeong

Abstract:

Floating photovoltaic system is a technology that combines photovoltaic power generation with floating structure. However, since floating technology has not been utilized in photovoltaic generation, there are no standardized criteria. It is separately developed and used by different installation bodies. This paper aims to discuss the change of floating photovoltaic system technology based on examples of floating photovoltaic systems installed in Korea.

Keywords: floating photovoltaic system, floating PV installation, ocean floating photovoltaic system, tracking type floating photovoltaic system

Procedia PDF Downloads 560
18950 Study Secondary Particle Production in Carbon Ion Beam Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Ensuring accurate radiotherapy with carbon therapy requires precise monitoring of radiation dose distribution within the patient's body. This monitoring is essential for targeted tumor treatment, minimizing harm to healthy tissues, and improving treatment effectiveness while lowering side effects. In our investigation, we employed a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo simulations. Initially, Geant4 simulations were utilized to extract the initial positions of secondary particles formed during interactions between carbon ions and water. These particles included protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we studied the relationship between the carbon ion beam and these secondary particles. Interaction Vertex Imaging (IVI) is valuable for monitoring dose distribution in carbon therapy. It provides details about the positions and amounts of secondary particles, particularly protons. The IVI method depends on charged particles produced during ion fragmentation to gather information about the range by reconstructing particle trajectories back to their point of origin, referred to as the vertex. In our simulations regarding carbon ion therapy, we observed a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the target's unique elongated geometry, which hindered the straightforward transmission of forward-generated protons. Consequently, the limited protons that emerged mostly originated from points close to the target entrance. The trajectories of fragments (protons) were approximated as straight lines, and a beam back-projection algorithm, using recorded interaction positions in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitoring of radiation dose, interaction vertex imaging

Procedia PDF Downloads 84
18949 Object Oriented Software Engineering Approach to Industrial Information System Design and Implementation

Authors: Issa Hussein Manita

Abstract:

This paper presents an example of industrial information system design and implementation (IIDC), the most common software engineering design steps that are applied to the different design stages. We are going through the life cycle of software system development. We start by a study of system requirement and end with testing and delivering system, going by system design and coding, program integration and system integration step. The most modern software design tools available used in the design this includes, but not limited to, Unified Modeling Language (UML), system modeling, SQL server side application, uses case analysis, design and testing as applied to information processing systems. The system is designed to perform tasks specified by the client with real data. By the end of the implementation of the system, default or user defined acceptance policy to provide an overall score as an indication of the system performance is used. To test the reliability of he designed system, it is tested in different environment and different work burden such as multi-user environment.

Keywords: software engineering, design, system requirement, integration, unified modeling language

Procedia PDF Downloads 570
18948 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI

Authors: Ananya Ananya, Karthik Rao

Abstract:

Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.

Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net

Procedia PDF Downloads 262
18947 Balancing Justice: A Critical Analysis of Plea Bargaining's Impact on Uganda's Criminal Justice System

Authors: Mukisa Daphine Letisha

Abstract:

Plea bargaining, a practice often associated with more developed legal systems, has emerged as a significant tool within Uganda's criminal justice system despite its absence in formal legal structures inherited from its colonial past. Initiated in 2013 with the aim of reducing case backlogs, expediting trials, and addressing prison congestion, plea bargaining reflects a pragmatic response to systemic challenges. While rooted in international statutes and domestic constitutional provisions, its implementation relies heavily on the Judicature (Plea Bargain) Rules of 2016, which outline procedural requirements and safeguards. Advocates argue that plea bargaining has yielded tangible benefits, including a reduction in case backlog and efficient allocation of resources, with notable support from judicial and prosecutorial authorities. Case examples demonstrate successful outcomes, with accused individuals benefitting from reduced sentences in exchange for guilty pleas. However, challenges persist, including procedural irregularities, inadequate statutory provisions, and concerns about coercion and imbalance of power between prosecutors and accused individuals. To enhance efficacy, recommendations focus on establishing monitoring mechanisms, stakeholder training, and public sensitization campaigns. In conclusion, while plea bargaining offers potential advantages in streamlining Uganda's criminal justice system, addressing its challenges requires careful consideration of procedural safeguards and stakeholder engagement to ensure fairness and integrity in the administration of justice.

Keywords: plea-bargaining, criminal-justice system, uganda, efficacy

Procedia PDF Downloads 59
18946 Test Research on Damage Initiation and Development of a Concrete Beam Using Acoustic Emission Technology

Authors: Xiang Wang

Abstract:

In order to validate the efficiency of recognizing the damage initiation and development of a concrete beam using acoustic emission technology, a concrete beam is built and tested in the laboratory. The acoustic emission signals are analyzed based on both parameter and wave information, which is also compared with the beam deflection measured by displacement sensors. The results indicate that using acoustic emission technology can detect damage initiation and development effectively, especially in the early stage of the damage development, which can not be detected by the common monitoring technology. Furthermore, the positioning of the damage based on the acoustic emission signals can be proved to be reasonable. This job can be an important attempt for the future long-time monitoring of the real concrete structure.

Keywords: acoustic emission technology, concrete beam, parameter analysis, wave analysis, positioning

Procedia PDF Downloads 141
18945 The Adoption of Sustainable Textiles & Smart Apparel Technology for the South African Healthcare Sector

Authors: Winiswa Mavutha

Abstract:

The adoption of sustainable textiles and smart apparel technology is crucial for the South African healthcare sector. It’s all about finding innovative solutions to track patient health and improve overall healthcare delivery. This research focuses on how sustainable textile fibers can be integrated with smart apparel technologies by utilizing embedded sensors and some serious data analytics—to enable real-time monitoring of patients. Smart apparel technology conducts constant monitoring of patients’ heart rate, temperature, and blood pressure, including delivering medication electronically, which enhances patient care and reduces hospital readmissions. Currently, the South African healthcare system has its own set of challenges, such as limited resources and a heavy disease burden. Apparel and textile manufacturers in South Africa can address these challenges while promoting environmental sustainability through waste reduction and decreased reliance on harmful chemicals that are typically utilized in traditional textile manufacturing. The study will emphasize the importance of sustainable practices in the textile supply chain. Additionally, this study will examine the importance of collaborative initiatives among stakeholders—such as government entities healthcare providers, including textile and apparel manufacturers, which promotes an environment that fosters innovation in sustainable smart textiles and apparel technology. If South Africa taps into its local resources and skills, it could be a pioneer in the global South for creating eco-friendly healthcare solutions. This aligns perfectly with global sustainability trends and sustainable development goals. The study will use a mixed-method approach by conducting surveys, focus group interviews, and case studies with healthcare professionals, patients, as well as textile and apparel manufacturers. The utilization of sustainable smart textiles doesn’t only enhance patient care through better monitoring, but it also supports a circular economy with biodegradable fibers and minimal textile waste. There’s a growing acknowledgment in the global healthcare sector about the benefits of smart textiles for personalized medicine, and South Africa has the chance to use this advancement to enhance its healthcare services while also addressing some persistent environmental challenges.

Keywords: smart apparel technologies, sustainable textiles, south African healthcare innovation, technology acceptance model

Procedia PDF Downloads 15
18944 Characterization of Surface Suction Grippers for Continuous-Discontinuous Fiber Reinforced Semi-Finished Parts of an Automated Handling and Preforming Operation

Authors: Jürgen Fleischer, Woramon Pangboonyanon, Dominic Lesage

Abstract:

Non-metallic lightweight materials such as fiber reinforced plastics (FRP) become very significant at present. Prepregs e.g. SMC and unidirectional tape (UD-tape) are one of raw materials used to produce FRP. This study concerns with the manufacturing steps of handling and preforming of this UD-SMC and focuses on the investigation of gripper characteristics regarding gripping forces in normal and lateral direction, in order to identify suitable operating pressures for a secure gripping operation. A reliable handling and preforming operation results in a higher adding value of the overall process chain. As a result, the suitable operating pressures depending on travelling direction for each material type could be shown. Moreover, system boundary conditions regarding allowable pulling force in normal and lateral directions during preforming could be measured.

Keywords: continuous-discontinuous fiber reinforced plastics, UD-SMC-prepreg, handling, preforming, prepregs, sheet moulding compounds, surface suction gripper

Procedia PDF Downloads 223
18943 Cockpit Integration and Piloted Assessment of an Upset Detection and Recovery System

Authors: Hafid Smaili, Wilfred Rouwhorst, Paul Frost

Abstract:

The trend of recent accident and incident cases worldwide show that the state-of-the-art automation and operations, for current and future demanding operational environments, does not provide the desired level of operational safety under crew peak workload conditions, specifically in complex situations such as loss-of-control in-flight (LOC-I). Today, the short term focus is on preparing crews to recognise and handle LOC-I situations through upset recovery training. This paper describes the cockpit integration aspects and piloted assessment of both a manually assisted and automatic upset detection and recovery system that has been developed and demonstrated within the European Advanced Cockpit for Reduction Of StreSs and workload (ACROSS) programme. The proposed system is a function that continuously monitors and intervenes when the aircraft enters an upset and provides either manually pilot-assisted guidance or takes over full control of the aircraft to recover from an upset. In order to mitigate the highly physical and psychological impact during aircraft upset events, the system provides new cockpit functionalities to support the pilot in recovering from any upset both manually assisted and automatically. A piloted simulator assessment was made in Oct-Nov 2015 using ten pilots in a representative civil large transport fly-by-wire aircraft in terms of the preference of the tested upset detection and recovery system configurations to reduce pilot workload, increase situational awareness and safe interaction with the manually assisted or automated modes. The piloted simulator evaluation of the upset detection and recovery system showed that the functionalities of the system are able to support pilots during an upset. The experiment showed that pilots are willing to rely on the guidance provided by the system during an upset. Thereby, it is important for pilots to see and understand what the aircraft is doing and trying to do especially in automatic modes. Comparing the manually assisted and the automatic recovery modes, the pilot’s opinion was that an automatic recovery reduces the workload so that they could perform a proper screening of the primary flight display. The results further show that the manually assisted recoveries, with recovery guidance cues on the cockpit primary flight display, reduced workload for severe upsets compared to today’s situation. The level of situation awareness was improved for automatic upset recoveries where the pilot could monitor what the system was trying to accomplish compared to automatic recovery modes without any guidance. An improvement in situation awareness was also noticeable with the manually assisted upset recovery functionalities as compared to the current non-assisted recovery procedures. This study shows that automatic upset detection and recovery functionalities are likely to positively impact the operational safety by means of reduced workload, improved situation awareness and crew stress reduction. It is thus believed that future developments for upset recovery guidance and loss-of-control prevention should focus on automatic recovery solutions.

Keywords: aircraft accidents, automatic flight control, loss-of-control, upset recovery

Procedia PDF Downloads 210
18942 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: grouted connection, numerical model, offshore structure, wear, wind energy

Procedia PDF Downloads 456
18941 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis

Authors: Asowata Osamede

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.

Keywords: power-conversion, meteonorm, PV panels, DC-DC converters

Procedia PDF Downloads 149
18940 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk

Authors: Moses Jenkins

Abstract:

Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.

Keywords: insulation, condensation, masonry, historic

Procedia PDF Downloads 174
18939 The Development of OTOP Web Application: Case of Samut Songkhram Province

Authors: Satien Janpla, Kunyanuth Kularbphettong

Abstract:

This paper aims to present the development of a web‑based system to serve the need of selling OTOP products in Samut Songkhram, Thailand. This system was designed to promote and sell OTOP products on website. We describe the design approaches and functional components of this system. The system was developed by PHP and JavaScript and MySQL database System. To evaluate the system performance, questionnaires were used to measure user satisfaction with system usability by specialists and users. The results were satisfactory as followed: Means for specialists and users were 4.05 and 3.97, and standard deviation for specialists and users were 0.563 and 0.644 respectively. Further analysis showed that the quality of One Tambon One Product (OTOP) Website was also at a good level as well.

Keywords: web-based system, OTOP, product, website

Procedia PDF Downloads 308
18938 Controlled Mobile Platform for Service Based Humanoid Robot System

Authors: Shrikant V. Sangludkar, Dilip I. Sangotra, Sachin T. Bagde, Abhijeet A. Khandagale

Abstract:

The paper discloses a controlled tracked humanoid robot moving platform. A driving and driven wheel are controlled by a control module to drive a robot body to move according to data signals of a monitoring module, in addition, remote transmission can be achieved, and a certain remote control function can be realized. A power management module circuit board looks after in used for providing electric drive for moving of the robot body and distribution of separate power source to be used in internal of robot system. An external port circuit board is arranged, the tracked robot moving platform can be used immediately for any data acquisition. The moving platform is simple and compact in structure, strong in adaptation performance, stable in operation and suitable for being operated in severe environments. Meanwhile, a layered modular installation structure is adopted, and therefore the moving platform is convenient to assemble and disassemble.

Keywords: moving platform, humanoid robot, embedded controlled drive, mobile robot, museum robots, self-localization, obstacle avoidance, communication

Procedia PDF Downloads 426
18937 Financial Service of Financial Institution for SME in Thailand

Authors: Charawee Butbumrung

Abstract:

This research aim to study the financial service of the Thailand financial Institution, second is to identify "best practices" offered by four financial institutions, namely, Kasikornthai Bank, Bangkok Bank, Siam Commercial Bank, and Thanachart Bank. In-depth interviews with managers of financial institution and borrowers reveal best practices from each financial institution. Close monitoring of and a close relationship with borrowers appear to be important for early detection of any problem. Another aspect that may be important is building up loyalty and developing reliability among members. A close and informal relationship with borrowers may also help in monitoring and early detection of problems that may arise in non-repayment of loans. Other factors that may be considered important to the success of a financial service scheme are cooperation and coordination among various agencies that provide additional support to borrowers. Indirectly, these support systems contribute to the success of a SME in Thailand.

Keywords: best practices, financial service, financial institution, SME in Thailand

Procedia PDF Downloads 293
18936 Robust Segmentation of Salient Features in Automatic Breast Ultrasound (ABUS) Images

Authors: Lamees Nasser, Yago Diez, Robert Martí, Joan Martí, Ibrahim Sadek

Abstract:

Automated 3D breast ultrasound (ABUS) screening is a novel modality in medical imaging because of its common characteristics shared with other ultrasound modalities in addition to the three orthogonal planes (i.e., axial, sagittal, and coronal) that are useful in analysis of tumors. In the literature, few automatic approaches exist for typical tasks such as segmentation or registration. In this work, we deal with two problems concerning ABUS images: nipple and rib detection. Nipple and ribs are the most visible and salient features in ABUS images. Determining the nipple position plays a key role in some applications for example evaluation of registration results or lesion follow-up. We present a nipple detection algorithm based on color and shape of the nipple, besides an automatic approach to detect the ribs. In point of fact, rib detection is considered as one of the main stages in chest wall segmentation. This approach consists of four steps. First, images are normalized in order to minimize the intensity variability for a given set of regions within the same image or a set of images. Second, the normalized images are smoothed by using anisotropic diffusion filter. Next, the ribs are detected in each slice by analyzing the eigenvalues of the 3D Hessian matrix. Finally, a breast mask and a probability map of regions detected as ribs are used to remove false positives (FP). Qualitative and quantitative evaluation obtained from a total of 22 cases is performed. For all cases, the average and standard deviation of the root mean square error (RMSE) between manually annotated points placed on the rib surface and detected points on rib borders are 15.1188 mm and 14.7184 mm respectively.

Keywords: Automated 3D Breast Ultrasound, Eigenvalues of Hessian matrix, Nipple detection, Rib detection

Procedia PDF Downloads 331
18935 High-Frequency Monitoring Results of a Piled Raft Foundation under Wind Loading

Authors: Laurent Pitteloud, Jörg Meier

Abstract:

Piled raft foundations represent an efficient and reliable technique for transferring high vertical and horizontal loads to the subsoil. Piled raft foundations were success­fully implemented for several high-rise buildings world­wide over the last decades. For the structural design of this foundation type the stiffnesses of both the piles and the raft have to be deter­mined for the static (e.g. dead load, live load) and the dynamic load cases (e.g. earthquake). In this context the question often arises, to which proportion wind loads are to be considered as dynamic loads. Usually a piled raft foundation has to be monitored in order to verify the design hypotheses. As an additional benefit, the analysis of this monitoring data may lead to a better under­standing of the behaviour of this foundation type for future projects in similar subsoil conditions. In case the measurement frequency is high enough, one may also draw conclusions on the effect of wind loading on the piled raft foundation. For a 41-storey office building in Basel, Switzerland, the preliminary design showed that a piled raft foundation was the best solution to satisfy both design requirements, as well as economic aspects. A high-frequency monitoring of the foundation including pile loads, vertical stresses under the raft, as well as pore water pressures was performed over 5 years. In windy situations the analysis of the measure­ments shows that the pile load increment due to wind consists of a static and a cyclic load term. As piles and raft react with different stiffnesses under static and dynamic loading, these measure­ments are useful for the correct definition of stiffnesses of future piled raft foundations. This paper outlines the design strategy and the numerical modelling of the aforementioned piled raft foundation. The measurement results are presented and analysed. Based on the findings, comments and conclusions on the definition of pile and raft stiffnesses for vertical and wind loading are proposed.

Keywords: design, dynamic, foundation, monitoring, pile, raft, wind load

Procedia PDF Downloads 196
18934 STML: Service Type-Checking Markup Language for Services of Web Components

Authors: Saqib Rasool, Adnan N. Mian

Abstract:

Web components are introduced as the latest standard of HTML5 for writing modular web interfaces for ensuring maintainability through the isolated scope of web components. Reusability can also be achieved by sharing plug-and-play web components that can be used as off-the-shelf components by other developers. A web component encapsulates all the required HTML, CSS and JavaScript code as a standalone package which must be imported for integrating a web component within an existing web interface. It is then followed by the integration of web component with the web services for dynamically populating its content. Since web components are reusable as off-the-shelf components, these must be equipped with some mechanism for ensuring their proper integration with web services. The consistency of a service behavior can be verified through type-checking. This is one of the popular solutions for improving the quality of code in many programming languages. However, HTML does not provide type checking as it is a markup language and not a programming language. The contribution of this work is to introduce a new extension of HTML called Service Type-checking Markup Language (STML) for adding support of type checking in HTML for JSON based REST services. STML can be used for defining the expected data types of response from JSON based REST services which will be used for populating the content within HTML elements of a web component. Although JSON has five data types viz. string, number, boolean, object and array but STML is made to supports only string, number and object. This is because of the fact that both object and array are considered as string, when populated in HTML elements. In order to define the data type of any HTML element, developer just needs to add the custom STML attributes of st-string, st-number and st-boolean for string, number and boolean respectively. These all annotations of STML are used by the developer who is writing a web component and it enables the other developers to use automated type-checking for ensuring the proper integration of their REST services with the same web component. Two utilities have been written for developers who are using STML based web components. One of these utilities is used for automated type-checking during the development phase. It uses the browser console for showing the error description if integrated web service is not returning the response with expected data type. The other utility is a Gulp based command line utility for removing the STML attributes before going in production. This ensures the delivery of STML free web pages in the production environment. Both of these utilities have been tested to perform type checking of REST services through STML based web components and results have confirmed the feasibility of evaluating service behavior only through HTML. Currently, STML is designed for automated type-checking of integrated REST services but it can be extended to introduce a complete service testing suite based on HTML only, and it will transform STML from Service Type-checking Markup Language to Service Testing Markup Language.

Keywords: REST, STML, type checking, web component

Procedia PDF Downloads 255
18933 Geographic Variation in the Baseline Susceptibility of Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) Field Populations to Bacillus thuringiensis Cry Toxins for Resistance Monitoring

Authors: Muhammad Arshad, M. Sufian, Muhammad D. Gogi, A. Aslam

Abstract:

The transgenic cotton expressing Bacillus thuringiensis (Bt) provides an effective control of Helicoverpa armigera, a most damaging pest of the cotton crop. However, Bt cotton may not be the optimal solution owing to the selection pressure of Cry toxins. As Bt cotton express the insecticidal proteins throughout the growing seasons, there are the chances of resistance development in the target pests. A regular monitoring and surveillance of target pest’s baseline susceptibility to Bt Cry toxins is crucial for early detection of any resistance development. The present study was conducted to monitor the changes in the baseline susceptibility of the field population of H. armigera to Bt Cry1Ac toxin. The field-collected larval populations were maintained in the laboratory on artificial diet and F1 generation larvae were used for diet incorporated diagnostic studies. The LC₅₀ and MIC₅₀ were calculated to measure the level of resistance of population as a ratio over susceptible population. The monitoring results indicated a significant difference in the susceptibility (LC₅₀) of H. armigera for first, second, third and fourth instar larval populations sampled from different cotton growing areas over the study period 2016-17. The variations in susceptibility among the tested insects depended on the age of the insect and susceptibility decreased with the age of larvae. The overall results show that the average resistant ratio (RR) of all field-collected populations (FSD, SWL, MLT, BWP and DGK) exposed to Bt toxin Cry1Ac ranged from 3.381-fold to 7.381-fold for 1st instar, 2.370-fold to 3.739-fold for 2nd instar, 1.115-fold to 1.762-fold for 3rd instar and 1.141-fold to 2.504-fold for 4th instar, depicting maximum RR from MLT population, whereas minimum RR for FSD and SWL population. The results regarding moult inhibitory concentration of H. armigera larvae (1-4th instars) exposed to different concentrations of Bt Cry1Ac toxin indicated that among all field populations, overall Multan (MLT) and Bahawalpur (BWP) populations showed higher MIC₅₀ values as compared to Faisalabad (FSD) and Sahiwal (SWL), whereas DG Khan (DGK) population showed an intermediate moult inhibitory concentrations. This information is important for the development of more effective resistance monitoring programs. The development of Bt Cry toxins baseline susceptibility data before the widespread commercial release of transgenic Bt cotton cultivars in Pakistan is important for the development of more effective resistance monitoring programs to identify the resistant H. armigera populations.

Keywords: Bt cotton, baseline, Cry1Ac toxins, H. armigera

Procedia PDF Downloads 143