Search results for: aircraft accidents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 950

Search results for: aircraft accidents

950 [Keynote Speech]: Conceptual Design of a Short Take-Off and Landing (STOL) Light Sport Aircraft

Authors: Zamri Omar, Alifi Zainal Abidin

Abstract:

Although flying machines have made their tremendous technological advancement since the first successfully flight of the heavier-than-air aircraft, its benefits to the greater community are still belittled. One of the reasons for this drawback is due to the relatively high cost needed to fly on the typical light aircraft. A smaller and lighter plane, widely known as Light Sport Aircraft (LSA) has the potential to attract more people to actively participate in numerous flying activities, such as for recreational, business trips or other personal purposes. In this paper, we propose a new LSA design with some simple, yet important analysis required in the aircraft conceptual design stage.

Keywords: light sport aircraft, conceptual design, aircraft layout, aircraft

Procedia PDF Downloads 314
949 Proposal of Innovative Risk Assessment of Ergonomic Factors in the Production of Jet Engines Using AHP (Analytic Hierarchy Process)

Authors: Jose Cristiano Pereira, Gilson Brito Alves Lima

Abstract:

Ergonomics is a key factor affecting the operational safety and quality in the aircraft engine manufacturing industry and evidence shows that the lack of attention to it can increase the risk of accidents. In order to emphasize the importance of ergonomics, this paper systematically reviews the critical processes used in the aircraft engine production industry with focus on the ergonomic factors. about the subject to identify key ergonomic factors. Experts validated the factors and used AHP to rank the factors in order of significance. From the six key risk factors identified, the ones with the highest weight are psychological demand followed by understanding of operational side. These factors suggest that measures must be taken to improve ergonomic factors, quality and safety in the manufacturing of aircraft engines.

Keywords: ergonomics, safety, aviation, aircraft engine production

Procedia PDF Downloads 285
948 Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance

Authors: Erdogan Kaygan, Alvin Gatto

Abstract:

An investigation of adaptable winglets for enhancing morphing aircraft performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centered on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance the aerodynamic efficiency of a morphing aircraft. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist and cant angle considered. The results from this work indicate that if adaptable winglets were employed on aircraft’s improvements in aircraft performance could be achieved.

Keywords: aircraft, drag, twist, winglet

Procedia PDF Downloads 544
947 Human Error Analysis in the USA Marine Accidents Reports

Authors: J. Sánchez-Beaskoetxea

Abstract:

The analysis of accidents, such as marine accidents, is one of the most useful instruments to avoid future accidents. In the case of marine accidents, from a simple collision of a small boat in a port to the wreck of a gigantic tanker ship, the study of the causes of the accidents is the basis of a great part of the marine international legislation. Some countries have official institutions who investigate all the accidents in which a ship with their flag is involved. In the case of the USA, the National Transportation Safety Board (NTSB) is responsible for these researches. The NTSB, after a deep investigation into each accident, publishes a Marine Accident Report with the possible cause of the accident. This paper analyses all the Marine Accident Reports published by the NTBS and focuses its attention especially in the Human Errors that led to reported accidents. In this research, the different Human Errors made by crew members are cataloged in 10 different groups. After a complete analysis of all the reports, the statistical analysis on the Human Errors typology in marine accidents is presented in order to use it as a tool to avoid the same errors in the future.

Keywords: human error, marine accidents, ship crew, USA

Procedia PDF Downloads 391
946 Comparison of Injuries and Accidents Globally and in Finland

Authors: R. Pääkkönen, L. Korpinen

Abstract:

We tried statistically to determine the biggest risks for accidents and injuries in Finland compared to other countries. We have a very high incidence of domestic falls and accidental poisoning compared to other European countries. On the other side, we have a relatively low number of accidents in traffic or at work globally, and in European scale, because we have worked hard to diminish these forms of accidents. In Finland, there is work to be done to improve attitudes and actions against domestic accidents.

Keywords: injuries, accident, comparison, Finland

Procedia PDF Downloads 200
945 Survivability of Maneuvering Aircraft against Air to Air Infrared Missile

Authors: Ji-Yeul Bae, Hyung Mo Bae, Jihyuk Kim, Hyung Hee Cho

Abstract:

An air to air infrared missile poses a significant threat to the survivability of an aircraft due to an advanced sensitivity of sensor and maneuverability of the missile. Therefore, recent military aircraft is equipped with MAW (Missile Approach Warning) to take an evasive maneuver and to deploy countermeasures like chaff and flare. In this research, an effect of MAW sensitivity and resulting evasive maneuver on the survivability of the fighter aircraft is studied. A single engine fighter jet with Mach 0.9 flying at an altitude of 5 km is modeled in the research and infrared signature of the aircraft is calculated by numerical simulation. The survivability is assessed in terms of lethal range. The MAW sensitivity and maneuverability of an aircraft is used as variables. The result showed that improvement in survivability mainly achieved when the missile approach from the side of the aircraft. And maximum 30% increase in survivability of the aircraft is achieved when existence of the missile is noticed at 7 km distance. As a conclusion, sensitivity of the MAW seems to be more important factor than the maneuverability of the aircraft in terms of the survivability.

Keywords: air to air missile, missile approach warning, lethal range, survivability

Procedia PDF Downloads 527
944 Double Layer Security Model for Identification Friend or Foe

Authors: Buse T. Aydın, Enver Ozdemir

Abstract:

In this study, a double layer authentication scheme between the aircraft and the Air Traffic Control (ATC) tower is designed to prevent any unauthorized aircraft from introducing themselves as friends. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or foe according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as a friend. In this method, even if embedded key is captured by the enemy aircraft, without the information of the second layer, the enemy can easily be determined. Overall, in this work, we present a more reliable system by adding a physical layer in the authentication process.

Keywords: ADS-B, communication with physical layer security, cryptography, identification friend or foe

Procedia PDF Downloads 130
943 Simulations of NACA 65-415 and NACA 64-206 Airfoils Using Computational Fluid Dynamics

Authors: David Nagy

Abstract:

This paper exemplifies the influence of the purpose of an aircraft on the aerodynamic properties of its airfoil. In particular, the research takes into consideration two types of aircraft, namely cargo aircraft and military high-speed aircraft and compares their airfoil characteristics using their NACA airfoils as well as computational fluid dynamics. The results show that airfoils of aircraft designed for cargo have a heavier focus on maintaining a large lift force whereas speed-oriented airplanes focus on minimizing the drag force.

Keywords: aerodynamic simulation, aircraft, airfoil, computational fluid dynamics, lift to drag ratio, NACA 64-206, NACA 65-415

Procedia PDF Downloads 321
942 Analysis of the Unmanned Aerial Vehicles’ Incidents and Accidents: The Role of Human Factors

Authors: Jacob J. Shila, Xiaoyu O. Wu

Abstract:

As the applications of unmanned aerial vehicles (UAV) continue to increase across the world, it is critical to understand the factors that contribute to incidents and accidents associated with these systems. Given the variety of daily applications that could utilize the operations of the UAV (e.g., medical, security operations, construction activities, landscape activities), the main discussion has been how to safely incorporate the UAV into the national airspace system. The types of UAV incidents being reported range from near sightings by other pilots to actual collisions with aircraft or UAV. These incidents have the potential to impact the rest of aviation operations in a variety of ways, including human lives, liability costs, and delay costs. One of the largest causes of these incidents cited is the human factor; other causes cited include maintenance, aircraft, and others. This work investigates the key human factors associated with UAV incidents. To that end, the data related to UAV incidents that have occurred in the United States is both reviewed and analyzed to identify key human factors related to UAV incidents. The data utilized in this work is gathered from the Federal Aviation Administration (FAA) drone database. This study adopts the human factor analysis and classification system (HFACS) to identify key human factors that have contributed to some of the UAV failures to date. The uniqueness of this work is the incorporation of UAV incident data from a variety of applications and not just military data. In addition, identifying the specific human factors is crucial towards developing safety operational models and human factor guidelines for the UAV. The findings of these common human factors are also compared to similar studies in other countries to determine whether these factors are common internationally.

Keywords: human factors, incidents and accidents, safety, UAS, UAV

Procedia PDF Downloads 213
941 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction

Authors: Sudhir Kumar Tiwari

Abstract:

The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.

Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model

Procedia PDF Downloads 325
940 Double Layer Security Authentication Model for Automatic Dependent Surveillance-Broadcast

Authors: Buse T. Aydin, Enver Ozdemir

Abstract:

An automatic dependent surveillance-broadcast (ADS-B) system has serious security problems. In this study, a double layer authentication scheme between the aircraft and ground station, aircraft to aircraft, ground station to ATC tower is designed to prevent any unauthorized aircrafts from introducing themselves as friends. This method can be used as a solution to the problem of authentication. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or unknown according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as friend. As a result, the ADS-B messages coming from this authenticated friendly aircraft will be processed. In this method, even if the embedded key is captured by the unknown aircraft, without the information of the second layer, the unknown aircraft can easily be determined. Overall, in this work, we present a reliable system by adding physical layer in the authentication process.

Keywords: ADS-B, authentication, communication with physical layer security, cryptography, identification friend or foe

Procedia PDF Downloads 148
939 Blue-Collar Workers’ Accidents and Close Call Situations Connected to the Use of Cell Phones among Finns Aged 18–65

Authors: L. Korpinen, R. Pääkkönen, F. Gobba

Abstract:

There has been discussion if the use of mobile phones causes accidents. We studied workers’ accidents and near accidents related to the use of phones. This study is part of a large cross-sectional study that was carried out on 15,000 working-age Finns. We noticed that there were 4–5 times more close call situations than accidents connected to mobile phones and also work related accidents were fewer than leisure related. There are confusing parameters like the use of mobile phones at work, differences in work content between women and men.

Keywords: blue-collar workers, accident, cell phone, close call situation

Procedia PDF Downloads 226
938 Vibration Energy Harvesting from Aircraft Structure Using Piezoelectric Transduction

Authors: M. Saifudin Ahmed Atique, Santosh Paudyal, Caixia Yang

Abstract:

In an aircraft, a great portion of energy is wasted due to its inflight structural vibration. Structural components vibrate due to aeroelastic instabilities, gust perturbations and engine rotation at very high rpm. Energy losses due to mechanical vibration can be utilized by harvesting energy from aircraft structure as electrical energy. This harvested energy can be stored in battery panels built into aircraft fuselage and can be used to power inflight auxiliary accessories i.e., lighting and entertainment systems. Moreover, this power can be used for wireless Structural Health Monitoring System (SHM) for aircraft and as an excellent replacement of aircraft Ground Power Unit (GPU)/Auxiliary Power Unit (APU) during passenger onboard time to power aircraft cabin accessories to reduce aircraft ground operation cost significantly. In this paper, we propose the design of a noble aircraft wing in which Piezoelectric panels placed under the composite skin of aircraft wing will generate electrical charges from any inflight aerodynamics or mechanical vibration and store it into battery to power auxiliary inflight systems/accessories as per requirement. Experimental results show that a well-engineered piezoelectric energy harvester based aircraft wing can produce adequate energy to support in-flight lighting and auxiliary cabin accessories.

Keywords: vibration energy, aircraft wing, piezoelectric material, inflight accessories

Procedia PDF Downloads 128
937 Risks in Forestry Operations, Analysis of Fatal Accidents

Authors: Rino Gubiani, Gianfranco Pergher

Abstract:

The work focused on the statistical analysis of accidents in the forestry sector (2000-2020) in Friuli-Venezia Giulia region, located in the North-East of Italy. The aim of the work was to analyse the evolution of the casualties throughout time and to evaluate possible improvements in the sector. It was shown that even nowadays the rate of accidents in forestry work is higher compared with all the other sectors, including agriculture; moreover, it was highlighted that some accidents remained present throughout the whole analysed range, such as slipping on the soil, being hit by trees and falling down from the plants. The results showed that an increase in forestry exploitation could even increase the total number of accidents, if advanced technological machines, such as cable cranes, would not implemented, given the fact that there is also a significant number of old people (above 50 years old) working in the sector.

Keywords: safety, forestry work, accidents, risk analysis, casualties, statistical analysis

Procedia PDF Downloads 107
936 Understanding Student Pilot Mental Workload in Recreational Aircraft Training

Authors: Ron Bishop, Jim Mitchell, Talitha Best

Abstract:

The increase in air travel worldwide has resulted in a pilot shortage. To increase student pilot capacity and lower costs, flight schools have increased the use of recreational aircraft (RA) with technological advanced cockpits in flight schools. The impact of RA based training compared to general aviation (GA) aircraft training on student mental workload is not well understood. This research investigated student pilot (N = 17) awareness of mental workload between technologically advanced cockpit equipped RA training with analogue gauge equipped GA training. The results showed a significantly higher rating of mental workload across subscales of mental and physical demand on the NASA-TLX in recreational aviation aircraft training compared to GA aircraft. Similarly, thematic content analysis of follow-up questions identified that mental workload of the student pilots flying the RA was perceived to be more than the GA aircraft.

Keywords: mental workload, recreational aircraft, student pilot, training

Procedia PDF Downloads 128
935 Retrospective Analysis of Injuries to Flight Attendants in a Commercial Airliner

Authors: B. K. Umesh Kumar, Waleed Al Shukaili

Abstract:

Air travel is one of the safest modes of travel. Inflight injuries occur due to various factors such as air turbulence, spillage of hot liquids, and fall of improperly stowed overhead baggage. Injuries occur not only to passengers but also to the flight attendants who are handling the passengers throughout the flight. A retrospective study of all records of crew safety report by the captain of the aircraft for all the flights from 01 Mar 2015 to 31 Mar 2019 in a National Carrier of Middle Eastern country, were analyzed. There was one injury to Flight attendant every 1200 flights. Commonest aircraft involved was Boeing. Inflight phase had 82% of all injuries. 63% of accidents involved female Attendants. Commonest age group involved was from 25-30 years. Cart and container injuries were the commonest and accounted for nearly 62% of the total injuries followed by turbulence. Back injuries were the commonest injuries followed by ankle, shoulder, and burns. Mean days of absence from work seen in shoulder injuries 40 days followed by injuries to back, which accounted for 38 Days. Reduction in injuries to flight attendants can be brought about by proper selection of crew, reduction in cart load. Proper maintenance of cart and container plays a major role in prevention of occupational accidents.

Keywords: flight attendants, in-flight injuries, types of injuries, work related injury prevention

Procedia PDF Downloads 93
934 Minimize Wear and Tear in Y12 Aircraft Tyres

Authors: N. D. Hiripitiya, H. V. H. De Soysa, H. S. U. Thrimavithana, B. R. Epitawala, K. A. D. D. Kuruppu, D. J. K. Lokupathirage

Abstract:

This research was related to identify the reasons which lead for early wear and tear of aircraft tyres. Further this research focused to rectify those issues in tyres with some modifications. The aircraft tyres of Y12 aircraft was selected for the study as due to Y12 aircraft fly frequently. Self-structured questionnaire was prepared and it was distributed among Y12 aircraft technicians. Based on their feedback several issues were identified related to tyre wear and tear. One of the reasons was uneven tyre wearing. But it could rectify after interchanging the tyre sides after completion of 50 landings. Several modifications were done in order to rectify all the identified issues. Several devices were constructed in order to enhance the life time of the Y12 aircraft tyre. Mechanical properties were measured for the worn-out tyres. The properties were compared with the control tyre sample. It was found that there was an average increment of tensile strength by 38.14 % of control tyre, when compared with the worn-out tyres which were completed 50 number of landings. The suggested modifications are in the process of implementation. It is confident that above mentioned solutions will lead to increase the life span of tyres in Y12 aircraft.

Keywords: aircraft, devices, enhance life span, modifications for tyre wear

Procedia PDF Downloads 259
933 In-Depth Analysis of Involved Factors to Car-Motorcycle Accidents in Budapest City

Authors: Danish Farooq, Janos Juhasz

Abstract:

Car-motorcycle accidents have been observed higher in recent years, which caused mainly riders’ fatalities and serious injuries. In-depth crash investigation methods aim to investigate the main factors which are likely involved in fatal road accidents and injury outcomes. The main objective of this study is to investigate the involved factors in car-motorcycle accidents in Budapest city. The procedure included statistical analysis and data sampling to identify car-motorcycle accidents by dominant accident types based on collision configurations. The police report was used as a data source for specified accidents, and simulation models were plotted according to scale (M 1:200). Car-motorcycle accidents were simulated in Virtual Crash software for 5 seconds before the collision. The simulation results showed that the main involved factors to car-motorcycle accidents were human behavior and view obstructions. The comprehensive, in-depth analysis also found that most of the car drivers and riders were unable to perform collision avoidance manoeuvres before the collision. This study can help the traffic safety authorities to focus on simulated involved factors to solve road safety issues in car-motorcycle accidents. The study also proposes safety measures to improve safe movements among road users.

Keywords: car motorcycle accidents, in-depth analysis, microscopic simulation, safety measures

Procedia PDF Downloads 122
932 The Two-Lane Rural Analysis and Comparison of Police Statistics and Results with the Help IHSDM

Authors: S. Amanpour, F. Mohamadian, S. A. Tabatabai

Abstract:

With the number of accidents and fatalities in recent years can be concluded that Iran is the status of road accidents, remains in a crisis. Investigate the causes of such incidents in all countries is a necessity. By doing this research, the results of the number and type of accidents and the location of the crash will be available. It is possible to prioritize economic and rational solutions to fix the flaws in the way of short-term the results are all the more strict rules about the desire to have black spots and cursory glance at the change of but results in long-term are desired to change the system or increase the width of the path or add extra track. In general, the relationship between the analysis of the accidents and near police statistics is the number of accidents in one year. This could prove the accuracy of the analysis done.

Keywords: traffic, IHSDM, crash, modeling, Khuzestan

Procedia PDF Downloads 253
931 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: road safety, prediction, accident, model, Qatar

Procedia PDF Downloads 227
930 Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft

Authors: Lucjan Setlak, Emil Ruda

Abstract:

The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out based on a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future).

Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems)

Procedia PDF Downloads 468
929 Factors Affecting At-Grade Railway Level Crossing Accidents in Bangladesh

Authors: Armana Huq

Abstract:

Railway networks have a significant role in the economy of any country. Similar to other transportation modes, many lives suffer from fatalities or injuries caused by accidents related to the railway. Railway accidents are not as common as roadway accidents yet they are more devastating and damaging than other roadway accidents. Despite that, issues related to railway accidents are not taken into consideration with significant attention as a major threat because of their less frequency compared to other accident categories perhaps. However, the Federal Railroad Administration reported nearly twelve thousand train accidents related to the railroad in the year 2014, resulting in more than eight hundred fatalities and thousands of injuries in the United States alone of which nearly one third fatalities resulted from railway crossing accidents. From an analysis of railway accident data of six years (2005-2010), it has been revealed that 344 numbers of the collision were occurred resulting 200 people dead and 443 people injured in Bangladesh. This paper includes a comprehensive overview of the railway safety situation in Bangladesh from 1998 to 2015. Each year on average, eight fatalities are reported in at-grade level crossings due to railway accidents in Bangladesh. In this paper, the number of railway accidents that occurred in Bangladesh has been presented and a fatality rate of 58.62% has been estimated as the percentage of total at-grade railway level crossing accidents. For this study, analysis of railway accidents in Bangladesh for the period 1998 to 2015 was obtained from the police reported accident database using MAAP (Microcomputer Accident Analysis Package). Investigation of the major contributing factors to the railway accidents has been performed using the Multinomial Logit model. Furthermore, hotspot analysis has been conducted using ArcGIS. Eventually, some suggestions have been provided to mitigate those accidents.

Keywords: safety, human factors, multinomial logit model, railway

Procedia PDF Downloads 124
928 Aerodynamic Analysis of Dimple Effect on Aircraft Wing

Authors: E. Livya, G. Anitha, P. Valli

Abstract:

The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favours the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft.

Keywords: airfoil, dimple effect, turbulence, boundary layer separation

Procedia PDF Downloads 509
927 Investigating Real Ship Accidents with Descriptive Analysis in Turkey

Authors: İsmail Karaca, Ömer Söner

Abstract:

The use of advanced methods has been increasing day by day in the maritime sector, which is one of the sectors least affected by the COVID-19 pandemic. It is aimed to minimize accidents, especially by using advanced methods in the investigation of marine accidents. This research aimed to conduct an exploratory statistical analysis of particular ship accidents in the Transport Safety Investigation Center of Turkey database. 46 ship accidents, which occurred between 2010-2018, have been selected from the database. In addition to the availability of a reliable and comprehensive database, taking advantage of the robust statistical models for investigation is critical to improving the safety of ships. Thus, descriptive analysis has been used in the research to identify causes and conditional factors related to different types of ship accidents. The research outcomes underline the fact that environmental factors and day and night ratio have great influence on ship safety.

Keywords: descriptive analysis, maritime industry, maritime safety, ship accident statistics

Procedia PDF Downloads 118
926 Image Based Landing Solutions for Large Passenger Aircraft

Authors: Thierry Sammour Sawaya, Heikki Deschacht

Abstract:

In commercial aircraft operations, almost half of the accidents happen during approach or landing phases. Automatic guidance and automatic landings have proven to bring significant safety value added for this challenging landing phase. This is why Airbus and ScioTeq have decided to work together to explore the capability of image-based landing solutions as additional landing aids to further expand the possibility to perform automatic approach and landing to runways where the current guiding systems are either not fitted or not optimum. Current systems for automated landing often depend on radio signals provided by airport ground infrastructure on the airport or satellite coverage. In addition, these radio signals may not always be available with the integrity and performance required for safe automatic landing. Being independent from these radio signals would widen the operations possibilities and increase the number of automated landings. Airbus and ScioTeq are joining their expertise in the field of Computer Vision in the European Program called Clean Sky 2 Large Passenger Aircraft, in which they are leading the IMBALS (IMage BAsed Landing Solutions) project. The ultimate goal of this project is to demonstrate, develop, validate and verify a certifiable automatic landing system guiding an airplane during the approach and landing phases based on an onboard camera system capturing images, enabling automatic landing independent from radio signals and without precision instrument for landing. In the frame of this project, ScioTeq is responsible for the development of the Image Processing Platform (IPP), while Airbus is responsible for defining the functional and system requirements as well as the testing and integration of the developed equipment in a Large Passenger Aircraft representative environment. The aim of this paper will be to describe the system as well as the associated methods and tools developed for validation and verification.

Keywords: aircraft landing system, aircraft safety, autoland, avionic system, computer vision, image processing

Procedia PDF Downloads 65
925 Comparison Analysis on the Safety Culture between the Executives and the Operators: Case Study in the Aircraft Manufacturer in Taiwan

Authors: Wen-Chen Hwang, Yu-Hsi Yuan

Abstract:

According to the estimation made by researchers of safety and hygiene, 80% to 90% of workplace accidents in enterprises could be attributed to human factors. Nevertheless, human factors are not the only cause for accidents; instead, happening of accidents is also closely associated with the safety culture of the organization. Therefore, the most effective way of reducing accident rate would be to improve the social and the organizational factors that influence organization’s safety performance. Overview the present study is to understand the current level of safety culture in manufacturing enterprises. A tool for evaluating safety culture matching the needs and characteristics of manufacturing enterprises was developed by reviewing literature of safety culture, and taking the special backgrounds of the case enterprises into consideration. Expert validity was also implied for developing the questionnaire. Moreover, safety culture assessment was conducted through the practical investigation of the case enterprises. Total 505 samples were involved, 53 were executives and 452 were operators. The result of this study in comparison of the safety culture level between the executives and the operators was reached the significant level in 8 dimensions: Safety Commitment, Safety System, Safety Training, Safety Involvement, Reward and Motivation, Communication and Reporting, Leadership and Supervision, Learning and Changing. In general, the overall safety culture were executive level higher than operators level (M: 74.98 > 69.08; t=2.87; p < 0.01).

Keywords: questionnaire survey, safety culture, t-test, media studies

Procedia PDF Downloads 284
924 Analysis of Road Accidents in India 2016 to 2021

Authors: Ajin Frank J., Shridevi Jeevan Kamble

Abstract:

The primary objective of this research paper is to identify significant patterns and insights in road accident data in India spanning from 2016 to 2021. The study reveals that the frequency of accidents, injuries, and fatalities varies depending on numerous factors such as the type of vehicle, time of accidents, age of the vehicle, age and gender of the driver, among others. Notably, the COVID-19 pandemic and subsequent lockdown measures have significantly impacted these figures. One of the key findings of the analysis is the rise in the number of accidents and deaths involving two-wheeler vehicles, particularly among younger individuals, in major states across India. This trend is of concern, and there is a need for increased awareness and precautions to prevent these types of accidents. Additionally, with the imminent rise of electric vehicles in the coming years, ensuring their safety on the road is a critical matter. Another significant factor contributing to road accidents is the age of vehicles. As vehicles age, their handling becomes more challenging compared to new ones, increasing the risk of accidents. Thus, it is imperative for the government to impose stringent regulations and laws to reduce these accident-causing factors and raise awareness among individuals about taking necessary precautions to avoid accidents. This study highlights the importance of understanding the underlying patterns and factors contributing to road accidents in India. Through this knowledge, policymakers and stakeholders can develop effective strategies to address these challenges and promote road safety, ultimately reducing the number of accidents, injuries, and fatalities on Indian roads.

Keywords: road accidents, India, road safety, accident deaths

Procedia PDF Downloads 62
923 Noise Reduction by Energising the Boundary Layer

Authors: Kiran P. Kumar, H. M. Nayana, R. Rakshitha, S. Sushmitha

Abstract:

Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft.

Keywords: airframe, boundary layer, noise, reduction

Procedia PDF Downloads 451
922 Aircraft Pitch Attitude Control Using Backstepping

Authors: Labane Chrif

Abstract:

A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control.

Keywords: nonlinear control, backstepping, aircraft control, Lyapunov function, longitudinal model

Procedia PDF Downloads 555
921 Effects of Aircraft Wing Configuration on Aerodynamic Efficiency

Authors: Aderet Pantierer, Shmuel Pantierer, Atif Saeed, Amir Elzawawy

Abstract:

In recent years, air travel has seen volatile growth. Due to this growth, the maximization of efficiency and space utilization has been a major issue for aircraft manufacturers. Elongation of the wingspan of aircraft has resulted in increased lift; and, thereby, efficiency. However, increasing the wingspan of aircraft has been detrimental to the manufacturing process and has led to airport congestion and required airport reconfiguration to accommodate the extended wingspans of aircraft. This project outlines differing wing configurations of a commercial aircraft and the effects on the aerodynamic loads produced. Multiple wing configurations are analyzed using Finite Element Models. These models are then validated by testing one wing configuration in a wind tunnel under laminar flow and turbulent flow conditions. The wing configurations to be tested include high and low wing aircraft, as well as various combinations of the two, including a unique model hereon referred to as an infinity wing. The infinity wing configuration consists of both a high and low wing, with the two wings connected by a vertical airfoil. This project seeks to determine if a wing configuration consisting of multiple airfoils produces more lift than the standard wing configurations and is able to provide a solution to manufacturing limitations as well as airport congestion. If the analysis confirms the hypothesis, a trade study will be performed to determine if and when an arrangement of multiple wings would be cost-effective.

Keywords: aerodynamics, aircraft design, aircraft efficiency, wing configuration, wing design

Procedia PDF Downloads 225