Search results for: temperature assisted growth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13463

Search results for: temperature assisted growth

3323 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 388
3322 Compositional Dependence of Hydroxylated Indium-Oxide on the Reaction Rate of CO2/H2 Reduction

Authors: Joel Y. Y. Loh, Geoffrey A. Ozin, Charles A. Mims, Nazir P. Kherani

Abstract:

A major goal in the emerging field of solar fuels is to realize an ‘artificial leaf’ – a material that converts light energy in the form of solar photons into chemical energy – using CO2 as a feedstock to generate useful chemical species. Enabling this technology will allow the greenhouse gas, CO2, emitted from energy and manufacturing production exhaust streams to be converted into valuable solar fuels or chemical products. Indium Oxide (In2O3) with surface hydroxyl (OH) groups have been shown to reduce CO2 in the presence of H2 to CO with a reaction rate of 15 μmol gcat−1 h−1. The likely mechanism is via a Frustrated Lewis Pair sites heterolytically splitting H2 to be absorbed and form protonic and hydric sites that can dissociate CO2. In this study, we investigate the dependence of oxygen composition of In2O3 on the CO2 reduction rate. In2O3-x films on quartz fiber paper were DC sputtered with an Indium target and varying O2/Ar plasma mixture. OH surface groups were then introduced by immersing the In2O3-x samples in KOH. We show that hydroxylated In2O3-x reduces more CO2 than non-hydroxylated groups and that a hydroxylated and higher O2/Ar ratio sputtered In2O3-x has a higher reaction rate of 45 μmol gcat-1 h-1. We show by electrical resistivity-temperature curves that H2 is adsorbed onto the surface of In2O3 whereas CO2 itself does not affect the indium oxide surface. We also present activation and ionization energy levels of the hydroxylated In2O3-x under vacuum, CO2 and H2 atmosphere conditions.

Keywords: solar fuels, photocatalysis, indium oxide nanoparticles, carbon dioxide

Procedia PDF Downloads 240
3321 Effect of Jatropha curcas Leaf Extract on Castor Oil Induced Diarrhea in Albino Rats

Authors: Fatima U. Maigari, Musa Halilu, M. Maryam Umar, Rabiu Zainab

Abstract:

Plants as therapeutic agents are used as drug in many parts of the world. Medicinal plants are mostly used in developing countries due to culture acceptability, belief or due to lack of easy access to primary health care services. Jatropha curcas is a plant from the Euphorbiaceae family which is widely used in Northern Nigeria as an anti-diarrheal agent. This study was conducted to determine the anti-diarrheal effect of the leaf extract on castor oil induced diarrhea in albino rats. The leaves of J. curcas were collected from Balanga Local government in Gombe State, north-eastern Nigeria; due to its bioavailability. The leaves were air-dried at room temperature and ground to powder. Phytochemical screening was done and different concentrations of the extract was prepared and administered to the different categories of experimental animals. From the results, aqueous leaf extract of Jatropha curcas at doses of 200mg/Kg and 400mg/Kg was found to reduce the mean stool score as compared to control rats, however, maximum reduction was achieved with the standard drug of Loperamide (5mg/Kg). Treatment of diarrhea with 200mg/Kg of the extract did not produce any significant decrease in stool fluid content but was found to be significant in those rats that were treated with 400mg/Kg of the extract at 2hours (0.05±0.02) and 4hours (0.01±0.01). A significant reduction of diarrhea in the experimental animals signifies it to possess some anti-diarrheal activity.

Keywords: anti-diarrhea, diarrhea, Jatropha curcas, loperamide

Procedia PDF Downloads 331
3320 Microstructure Study of Melt Spun Mg₆₅Cu₂₅Y₁₀

Authors: Michael Regev, Shai Essel, Alexander Katz-Demyanetz

Abstract:

Magnesium alloys are characterized by good physical properties: They exhibit high strength, are lightweight and have good damping absorption and good thermal and electrical conductivity. Amorphous magnesium alloys, moreover, exhibit higher strength, hardness and a large elastic domain in addition to having excellent corrosion resistance. These above-mentioned advantages make magnesium based metallic glasses attractive for industrial use. Among the various existing magnesium alloys, Mg₆₅Cu₂₅Y₁₀ alloy is known to be one of the best glass formers. In the current study, Mg₆₅Cu₂₅Y₁₀ ribbons were produced by melt spinning, their microstructure was investigated in its as-cast condition, after pressing under 0.5 GPa for 5 minutes under different temperatures - RT, 500C, 1000C, 1500C and 2000C - and after five minute exposure to the above temperatures without pressing. The microstructure was characterized by means of X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), High Resolution Scanning Electron Microscope (HRSEM) and High Resolution Transmission Electron Microscopy (HRTEM). XRD and DSC studies showed that the as-cast material had an amorphous character and that the material crystallized during exposure to temperature with or without applying stress. HRTEM revealed that the as-cast Mg65Cu25Y10, although known to be one of the best glass formers, is nano-crystalline rather than amorphous. The current study casts light on the question what an amorphous alloy is and whether there is any clear borderline between amorphous and nano-crystalline alloys.

Keywords: metallic glass, magnesium, melt spinning, amorphous alloys

Procedia PDF Downloads 237
3319 Prospects in Development of Ecofriendly Biopesticides in Management of Postharvest Fungal Deterioration of Cassava (Manihot esculenta Crantz)

Authors: Anderson Chidi Amadioha, Promise Chidi Kenkwo, A. A. Markson

Abstract:

Cassava (Manihot esculenta Crantz) is an important food and cash crop that provide cheap source of carbohydrate for food, feed and raw material for industries hence a commodity for feature economic development of developing countries. Despite the importance, its production potentials is undermined by disease agents that greatly reduce yield and render it unfit for human consumption and industrial use. Pathogenicity tests on fungal isolates from infected cassava revealed Aspergillus flavus, Rhizopus stolonifer, Aspergillus niger, and Trichodderma viride as rot-causing organisms. Water and ethanol extracts of Piper guineense, Ocimum graticimum, Cassia alata, and Tagetes erecta at 50% concentration significantly inhibited the radial growth of the pathogens in vitro and their development and spread in vivo. Low cassava rot incidence and severity was recorded when the extracts were applied before than after spray inoculating with spore suspension (1x105 spores/ml of distilled water) of the pathogenic organisms. The plant materials are readily available, and their extracts are biodegradable and cost effective. The fungitoxic potentials of extracts of these plant materials could be exploited as potent biopesticides in the management of postharvest fungal deterioration of cassava especially in developing countries where synthetic fungicides are not only scarce but also expensive for resource poor farmers who produce over 95% of the food consumed.

Keywords: cassava, biopesticides, in vitro, in vivo, pathogens, plant extracts

Procedia PDF Downloads 180
3318 Improvement in Drought Stress Tolerance in Wheat by Arbuscular Mycorrhizal Fungi

Authors: Seema Sangwan, Ekta Narwal, Kannepalli Annapurna

Abstract:

The aim of this study was to determine the effect of arbuscular mycorrhizal fungi (AMF) inoculation on drought stress tolerance in 3 genotypes of wheat subjected to moderate water stress, i.e. HD 3043 (drought tolerant), HD 2987 (drought tolerant), and HD 2967 (drought sensitive). Various growth parameters were studied, e.g. total dry weight, total shoot and root length, root volume, root surface area, grain weight and number, leaf area, chlorophyll content in leaves, relative water content, number of spores and percent colonisation of roots by arbuscular mycorrhizal fungi. Total dry weight, root surface area and chlorophyll content were found to be significantly high in AMF inoculated plants as compared to the non-mycorrhizal ones and also higher in drought-tolerant varieties of wheat as compared to the sensitive variety HD 2967, in moderate water stress treatments. Leakage of electrolytes was lower in case of AMF inoculated stressed plants. Under continuous water stress, leaf water content and leaf area were significantly increased in AMF inoculated plants as compared to un-inoculated stressed plants. Overall, the increased colonisation of roots of wheat by AMF in inoculated plants weather drought tolerant or sensitive could have a beneficial effect in alleviating the harmful effects of water stress in wheat and delaying its senescence.

Keywords: Arbuscular mycorrhizal fungi, wheat, drought, stress

Procedia PDF Downloads 197
3317 Medicinal Plants and Arbuscular mycorrhizal Colonization

Authors: Ammani K., Glory M.

Abstract:

Demands of traditional herbal medicines are increasing day by day over the world. Considering the growing demand of medicinal plants in curative treatments and the role of VAM fungi in augmentation of the production of active secondary metabolites by the medicinal plants, the present work has been undertaken to survey the mycorrhizal status in 30 different medicinal plants belonging to various families from Krishna district, Andhra Pradesh. The roots were collected carefully and stained by the Phillips & Hayman technique. Basing on the occurrence of vesicles and arbuscules, categorized into four grades; Excellent: mycelia, vesicles or arbuscules present more than 75% of root bits, Good: mycelia, vesicles or arbuscules present 50-75% in surface of root bits, moderate: mycelia, vesicles or arbuscules present 25-50% in surface of root bits, and poor: mycelia, vesicles or arbuscules present 1-25% in surface of root bits. The study reveals that the roots of all plants were colonized by AM fungi. Percentage of root colonization by AM fungi was more in Aloe vera, Phylanthus emblica, Azadiracta indica and least in plants such as Aerva lanata, Vinca rosea, Crotalaria verrucosa among the 30 medicinal plants in present study. The enhancement of growth and vigour and increased production of bioactive compounds of the medicinal plants is desirable which may be achieved by inoculation of the roots with Arbuscular mycorrhizal fungi. There is a steady increase in the cultivation of medicinal plants to maintain a steady supply to support the increasing demand but corresponding researches of VAM fungi and their association in medicinal plants have received very little attention as compared to the studies on forest species and field crops. So a vast research on this field is necessary for a better tomorrow.

Keywords: Arbuscular mycorrhizae, colonization, categories, medicinal plants

Procedia PDF Downloads 402
3316 Virtual Prototyping of Ventilated Corrugated Fibreboard Carton of Fresh Fruit for Improved Containerized Transportation

Authors: Alemayehu Ambaw, Matia Mukama, Umezuruike Linus Opara

Abstract:

This study introduces a comprehensive method for designing ventilated corrugated fiberboard carton for fresh fruit packaging utilising virtual prototyping. The technique efficiently assesses and analyses the mechanical and thermal capabilities of fresh fruit packing boxes prior to making production investments. Comprehensive structural, aerodynamic, and thermodynamic data from designs were collected and evaluated in comparison to real-world packaging needs. Physical prototypes of potential designs were created and evaluated afterward. The virtual prototype is created with computer-aided graphics, computational structural dynamics, and computational fluid dynamics technologies. The virtual prototyping quickly generated data on carton compression strength, airflow resistance, produce cooling rate, spatiotemporal temperature, and product quality map in the cold chain within a few hours. Six distinct designs were analysed. All the various carton designs showed similar effectiveness in preserving the quality of the goods. The innovative packaging box design is more compact, resulting in a higher freight density of 1720 kg more fruit per reefer compared to the commercial counterpart. The precooling process was improved, resulting in a 17% increase in throughput and a 30% reduction in power usage.

Keywords: postharvest, container logistics, space/volume usage, computational method, packaging technology

Procedia PDF Downloads 59
3315 FEDBD Plasma, A Promising Approach for Skin Rejuvenation

Authors: P. Charipoor, M. Khani, H. Mahmoudi, E. Ghasemi, P. Akbartehrani, B. Shokri

Abstract:

Cold air plasma could have a variety of effects on cells and living organisms and also shows good results in medical and cosmetic cases. Herein, plasma floating electrode dielectric barrier discharge (FEDBD) plasma was designed for mouse skin rejuvenation purposes. It is safe and easy to use in clinics, laboratories, and homes. The effects of this device were investigated on mouse skin. Vitamin C ointment in combination with plasma was also used as a new method to improve FEDBD results. In this study, 20 Wistar rats were evaluated in four groups. The first group received high-dose plasma, the second group received moderate-dose plasma (with vitamin C cream), the third group received low-dose plasma (with vitamin C cream) for 6 minutes, and the fourth group received only vitamin C cream. This process was done 3 times a week for 4 weeks. Skin temperature was monitored to evaluate the thermal effect of plasma. The presence of reactive species was also demonstrated using optical spectroscopy. Mechanical assays were performed to evaluate the effect of plasma and vitamin C on the mechanical strength of the tissue, which showed a positive effect of plasma on the treated tissue compared to the control group. Using pathological and biometric skin tests, an increase in collagen levels, epidermal thickness, and an increase in fibroblasts was observed in rat skin, as well as increased skin elasticity. This study showed the positive effect of using the FEDBD plasma device on the effective parameters in skin rejuvenation.

Keywords: plasma, skin rejuvenation, collagen, epidermal thickness

Procedia PDF Downloads 258
3314 Evolving Maritime Geopolitics of the Indo-Pacific

Authors: Pragya Pandey

Abstract:

A major discussion in the 21st -century international affairs has been around the shifting economic and political center of gravity to Asia. In the maritime realm, it translates into a shift in focus from the Atlantic to the Pacific-Indian Ocean region or what is now popularly called the Indo-Pacific region. The Indo-Pacific is rapidly eclipsing once dominant Asia-Pacific as center of trade, investment, competition and cooperation. The growing inter-connectivity between the Indian Ocean and the Pacific Ocean is bringing forth the ‘confluence of the two seas’. Therefore, the Indo-Pacific strategic arc is acquiring greater salience in consonance with the changing realities of the time. The region is undergoing unprecedented transformation in its security outlook. At present, the region is at an interesting historic epoch- witnessing the simultaneous rise India and China, their economic growth, naval modernization and power projection capabilities, alongside the continued presence of the United States, particularly with its rebalancing strategy. Besides the interplay among the three major stakeholders, other regional players like Japan, Australia, and Indonesia, would play a crucial role in the geopolitical re-arrangement of the Indo-Pacific region. The region will be the future theater of activities to determine the shifts and distribution of sea power, by the virtue of its strategic location, intrinsic value of the energy resources and significant maritime trade routes of the region. Therefore, the central theme of the paper would be to scrutinize the maritime security environment of the region against the backdrop of the tricky geopolitical landscape, contributing to the change in the regional and global balance of power.

Keywords: China, geopolitics, India, United States

Procedia PDF Downloads 259
3313 Influence of Boron and Germanium Doping on Physical-Mechanical Properties of Monocrystalline Silicon

Authors: Ia Kurashvili, Giorgi Darsavelidze, Giorgi Chubinidze, Marina Kadaria

Abstract:

Boron-doped Czochralski (CZ) silicon of p-type, widely used in the photovoltaic industry is suffering from the light-induced-degradation (LID) of bulk electrophysical characteristics. This is caused by specific metastable B-O defects, which are characterized by strong recombination activity. In this regard, it is actual to suppress B-O defects in CZ silicon. One of the methods is doping of silicon by different isovalent elements (Ge, C, Sn). The present work deals with the investigations of the influence of germanium doping on the internal friction and shear modulus amplitude dependences in the temperature interval of 600-800⁰C and 0.5-5 Hz frequency range in boron-containing monocrystalline silicon. Experimental specimens were grown by Czochralski method (CZ) in [111] direction. Four different specimens were investigated: Si+0,5at%Ge:B (5.1015cm-3), Si+0,5at%Ge:B (1.1019cm-3), Si+2at%Ge:B (5.1015cm-3) and Si+2at%Ge:B (1.1019cm-3). Increasing tendency of dislocation density and inhomogeneous distribution in silicon crystals with high content of boron and germanium were revealed by metallographic studies on the optical microscope of NMM-80RF/TRF. Weak increase of current carriers-holes concentration and slight decrease of their mobility were observed by Van der Pauw method on Ecopia HMS-3000 device. Non-monotonous changes of dislocation origin defects mobility and microplastic deformation characteristics influenced by measuring temperatures and boron and germanium concentrations were revealed. Possible mechanisms of changes of mechanical characteristics in Si-Ge experimental specimens were discussed.

Keywords: dislocation, internal friction, microplastic deformation, shear modulus

Procedia PDF Downloads 238
3312 Dehydration of Glycerol to Acrolein with Solid Acid Catalysts

Authors: Lin Huang, Bo Wang, Armando Borgna

Abstract:

Dehydration of glycerol to acrolein was conducted with solid acid catalysts in liquid phase in a batch reactor and in gas phase in a fix-bed reactor, respectively. In the liquid-phase reaction, ZSM-5, H3PO4-modified ZSM-5 and heteropolyacids including H3PW12O40•xH2O (HPW) and Cs2.5H0.5PW12O40 (CsPW) were studied as catalysts. High temperatures and high boiling point solvents such as sulfolane improved the selectivity to acrolein through suppressing the formation of polyglycerols and coke. Catalytic results and temperature-programmed desorption of ammonia showed that the yield of acrolein increased with increasing catalyst acidity within the range of weak acid strength. Weak acid sites favored the selectivity to acrolein whereas strong acid sites promoted the formation of coke. ZSM-5 possessing only acid sites led to a high acrolein yield, while heteropolyacid catalysts with strong acid sites produced a low acrolein yield. In the gas-phase reaction, HPW and CsPW supported on metal oxides such as SiO2, γ-Al2O3, SiO2-Al2O3, ZrO2 and silicate TUD-1 were studied as catalysts. HPW/TUD-1 was most active for the production of acrolein, followed by HPW/SiO2. An acrolein yield of 61 % was obtained over HPW/TUD-1. X-ray diffraction study suggested that HPW and CsPW were stable and more dispersed on SiO2, silicate TUD-1 and SiO2-Al2O3. It was found that the structures of HPW and CsPW were destroyed by interaction with γ-Al2O3 and ZrO2. Compared to CsPW/TUD-1, the higher acrolein yield with HPW/TUD-1 may be attributed to more Brønsted acid sites on HPW/TUD-1, based on preliminary pyridine adsorption IR study.

Keywords: dehydration, glycerol, acrolein, solid acid catalysts, gas-phase, liquid-phase

Procedia PDF Downloads 265
3311 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes

Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli

Abstract:

The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.

Keywords: biocomposite, char, olive pomace, pyrolysis

Procedia PDF Downloads 251
3310 Design and Implementation Wireless System by Using Microcontrollers.Application for Drive Acquisition System with Multiple Sensors

Authors: H. Fekhar

Abstract:

Design and implementation acquisition system using radio frequency (RF) ASK module and micro controllers PIC is proposed in this work. The paper includes hardware and software design. The design tools are divided into two units , namely the sender MCU and receiver.The system was designed to measure temperatures of two furnaces and pressure pneumatic process. The wireless transmitter unit use the 433.95 MHz band directly interfaced to micro controller PIC18F4620. The sender unit consists of temperatures-pressure sensors , conditioning circuits , keypad GLCD display and RF module.Signal conditioner converts the output of the sensors into an electric quantity suitable for operation of the display and recording system.The measurements circuits are connected directly to 10 bits multiplexed A/D converter.The graphic liquid crystal display (GLCD) is used . The receiver (RF) module connected to a second microcontroller ,receive the signal via RF receiver , decode the Address/data and reproduces the original data . The strategy adopted for establishing communication between the sender MCU and receiver uses the specific protocol “Header, Address and data”.The communication protocol dealing with transmission and reception have been successfully implemented . Some experimental results are provided to demonstrate the effectiveness of the proposed wireless system. This embedded system track temperatures – pressure signal reasonably well with a small error.

Keywords: microcontrollers, sensors, graphic liquid cristal display, protocol, temperature, pressure

Procedia PDF Downloads 460
3309 Optimized Design, Material Selection, and Improvement of Liners, Mother Plate, and Stone Box of a Direct Charge Transfer Chute in a Sinter Plant: A Computational Approach

Authors: Anamitra Ghosh, Neeladri Paul

Abstract:

The present work aims at investigating material combinations and thereby improvising an optimized design of liner-mother plate arrangement and that of the stone box, such that it has low cost, high weldability, sufficiently capable of withstanding the increased amount of corrosive shear and bending loads, and having reduced thermal expansion coefficient at temperatures close to 1000 degrees Celsius. All the above factors have been preliminarily examined using a computational approach via ANSYS Thermo-Structural Computation, a commercial software that uses the Finite Element Method to analyze the response of simulated design specimens of liner-mother plate arrangement and the stone box, to varied bending, shear, and thermal loads as well as to determine the temperature gradients developed across various surfaces of the designs. Finally, the optimized structural designs of the liner-mother plate arrangement and that of the stone box with improved material and better structural and thermal properties are selected via trial-and-error method. The final improvised design is therefore considered to enhance the overall life and reliability of a Direct Charge Transfer Chute that transfers and segregates the hot sinter onto the cooler in a sinter plant.

Keywords: shear, bending, thermal, sinter, simulated, optimized, charge, transfer, chute, expansion, computational, corrosive, stone box, liner, mother plate, arrangement, material

Procedia PDF Downloads 109
3308 Developing Well-Being Indicators and Measurement Methods as Illustrated by Projects Aimed at Preventing Obesity in Children

Authors: E. Grochowska-Niedworok, K. Brukało, M. Hadasik, M. Kardas

Abstract:

Consumption of vegetables by school children and adolescents is essential for their normal growth, development and health, but a significant minority of the world's population consumes the right amount of these products. The aim of the study was to evaluate the preferences and frequency of consumption of vegetables by school children and adolescents. It has been assumed that effectively implemented nutrition education programs should have an impact on increasing the frequency of vegetable consumption among the recipients. The study covered 514 students of five schools in the Opole Voivodeship aged 9 years to 22 years. The research tool was an author's questionnaire, which consisted of closed questions on the frequency of vegetable consumption and the use of 10 ways to treat them. Preferences and frequencies are shown in percentages, while correlations were estimated on the basis of Cramer`s V and gamma coefficients. In each of the examined age groups, the relationship between sex and vegetable consumption (the Cramer`s V coefficient value was 0.06 to 0.38) was determined and the various methods of culinary processing were used (V Craméra was 0.08 to 0.34). For both sexes, the relationship between age and frequency of vegetable consumption was shown (gamma values ranged from ~ 0.00 to 0.39) and different cooking methods (gamma values were 0.01 to 0.22). The most important determinant of nutritional choices is the taste and availability of products. The fact that they have a positive effect on their health is only in third position. As has been shown, obesity prevention programs can not only address nutrition education but also teach about new flavors and increase the availability of healthy foods. In addition, the frequency of vegetable consumption can be a good indicator reflecting the healthy behaviors of children and adolescents.

Keywords: children and adolescents, frequency, welfare rate, vegetables

Procedia PDF Downloads 204
3307 Extraction and Uses of Essential Oil

Authors: Ram Prasad Baral

Abstract:

A large number of herb materials contain Essential Oils with extensive bioactivities. Acknowledging the importance of plants and its medicinal value, extraction of Essential Oil had been done using Steam Distillation method. In this project, Steam Distillation was used to extract oil from different plant materials like Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha Arvensia, Nardostachys Jatamansi, Wintergreen Essential Oil, and Valeriana Officinalis. Research has confirmed centuries of practical use of essential oils, and we now know that the 'fragrant pharmacy' contains compounds with an extremely broad range of biochemical effects. Essential oils are so termed as they are believed to represent the very essence of odor and flavor. The recovery of Essential Oil from the raw botanical starting material is very important since the quality of the oil is greatly influenced during this step. There is a variety of methods for obtaining volatile oils from plants. Steam distillation method was found to be one of the promising techniques for the extraction of essential oil from plants as reputable distiller will preserve the original qualities of the plant. The distillation was conducted in Clevenger apparatus in which boiling, condensing, and decantation was done. Analysis of essential oil was done using Gas Chromatography-Mass Spectrometer apparatus, which gives evaluates essential oil qualitatively and quantitatively. The volume of essential oil obtained was changing with respect to temperature and time of heating.

Keywords: Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha

Procedia PDF Downloads 324
3306 Effect of B2O3 Addition on Sol-gel Synthesized 45S5 Bioglass

Authors: P. Dey, S. K. Pal

Abstract:

Ceramics or glass ceramics with the property of bone bonding at the nearby tissues and producing possible bone in growth are known to be bioactive. The most extensively used glass in this context is 45S5 which is a silica based bioglass mostly explored in the field of tissue engineering as scaffolds for bone repair. Nowadays, the borate based bioglass are being utilized in orthopedic area largely due to its superior bioactivity with the formation of bone bonding. An attempt has been made, in the present study, to observe the effect of B2O3 addition in 45S5 glass and perceive its consequences on the thermal, mechanical and biological properties. The B2O3 was added in 1, 2.5, and 5 wt% with simultaneous reduction in the silica content of the 45S5 composition. The borate based bioglass has been synthesized by the means of sol-gel route. The synthesized powders were then thermally analyzed by DSC-TG. The as synthesized powders were then calcined at 600ºC for 2hrs. The calcined powders were then pressed into pellets followed by sintering at 850ºC with a holding time of 2hrs. The phase analysis and the microstructural analysis of the as synthesized and calcined powder glass samples and the sintered glass samples were being carried out using XRD and FESEM respectively. The formation of hydroxyapatite layer was performed by immersing the sintered samples in the simulated body fluid (SBF) and mechanical property has been tested for the sintered samples by universal testing machine (UTM). The sintered samples showed the presence of sodium calcium silicate phase while the formation of hydroxyapaptite takes place for SBF immersed samples. The formation of hydroxyapatite is more pronounced in case of borated based glass samples instead of 45S5.

Keywords: 45S5 bioglass, bioactive, borate, hydroxyapatite, sol-gel synthesis

Procedia PDF Downloads 256
3305 Effect of Silicon on Tritrophic Interaction of Cotton, Whitefly and Chrysoperla carnea

Authors: Asim Abbasi, Muhammad Sufyan

Abstract:

The present experiment was carried out to examine the effects of silicon dioxide on tritrophic interaction of cotton, whitefly, and the predator Chrysoperla carnea. Population of whitefly was maintained on silicon treated and non-treated cotton for two generations in greenhouse net cages exposed to outside temperature and luminosity. The cotton was treated with silicon dioxide twice after 15 days intervals with 200 ppm concentration. A stock rearing of the natural predator was developed in the laboratory conditions. In the bioassay eggs of the predator all at the same age were individualized in glass petri plates that will be pierced with a pin to allow aeration and maintained in an incubator at 28 ± 2°C, 70 ± 10% relative humidity and 12h photo phase. Population of whitefly stayed on silicon treated, and non-treated cotton were offered to newly hatched chrysopid larvae until the end of the larval stage, assuring a permanent supply. Feeding preference of C. carnea along with longevity, survival of each instar larvae, pupation, adult emergence, and fecundity was checked. The results revealed that there was no significant difference in the feeding preference of C. carnea among both treatments. Durations of 1st and 2nd larval instar were also at par in both treatments. However overall longevity and adult emergence were a bit lower in silicon treated whitefly treatment. This may be due to the fact that silicon reduces the nutritional quality of host because of reduced whitefly feeding on silicon treated cotton. No significant difference in 1st and 2nd larval instars and then increased larval duration in later instars suggested that the effect of silicon treated host should be checked on more than 1 generation of C. carnea to get better findings.

Keywords: Chrysoperla carnea, silicon, tritrophic, whitefly

Procedia PDF Downloads 180
3304 Sustainable Manufacturing Industries and Energy-Water Nexus Approach

Authors: Shahbaz Abbas, Lin Han Chiang Hsieh

Abstract:

The significant population growth and climate change issues have contributed to the natural resources depletion and their sustainability in the future. Manufacturing industries have a substantial impact on every country’s economy, but the sustainability of the industrial resources is challenging, and the policymakers have been developing the possible solutions to manage the sustainability of industrial resources such as raw material, energy, water, and industrial supply chain. In order to address these challenges, nexus approach is one of the optimization and modelling techniques in the recent sustainable environmental research. The interactions between the nexus components acknowledge that all components are dependent upon each other, and they are interrelated; therefore, their sustainability is also associated with each other. In addition, the nexus concept does not only provide the resources sustainability but also environmental sustainability can be achieved through nexus approach by utilizing the industrial waste as a resource for the industrial processes. Based on energy-water nexus, this study has developed a resource-energy-water for the sugar industry to understand the interactions between sugarcane, energy, and water towards the sustainable sugar industry. In particular, the focus of the research is the Taiwanese sugar industry; however, the same approach can be adapted worldwide to optimize the sustainability of sugar industries. It has been concluded that there are significant interactions between sugarcane, energy consumption, and water consumption in the sugar industry to manage the scarcity of resources in the future. The interactions between sugarcane and energy also deliver a mechanism to reuse the sugar industrial waste as a source of energy, consequently validating industrial and environmental sustainability. The desired outcomes from the nexus can be achieved with the modifications in the policy and regulations of Taiwanese industrial sector.

Keywords: energy-water nexus, environmental sustainability, industrial sustainability, natural resource management

Procedia PDF Downloads 125
3303 Effect of Inclusion of Moringa oleifera Leaf on Physiological Responses of Broiler Chickens at Finisher Phase during Hot-Dry Season

Authors: Oyegunle Emmanuel Oke, A. O. Onabajo, M. O. Abioja, F. O. Sorungbe, D. E. Oyetunji, J. A. Abiona, A. O. Ladokun, O. M. Onagbesan

Abstract:

An experiment was conducted to determine the effect of different dietary inclusion levels of Moringa oleifera leaf powder (MOLP) on growth and physiological responses of broiler chickens during hot-dry season in Nigeria. Two hundred and forty (240) day-old commercial broiler chicks were randomly allotted to four dietary treatments having four replicates each. Each replicate had 15 birds. The levels of inclusion were 0g (Control group), 4g, 8g and 12g/Kg feed. The experiment lasted for eight weeks. The results of the study revealed that the initial body weight was significantly (P < 0.05) higher in birds fed 12g/kg diet than those fed 0, 4, and 8g MOLP. The birds fed 0, 4 and 8g/kg diet however had similar weights. The final body weight was significantly (P < 0.05) higher in the birds fed 12g MOLP than those fed 0, 4 and 8g MOLP. The final weights were similar in the birds fed 4 and 8g/kg diet but higher (P < 0.05) than those of the birds in the control group. The body weight gain was similar in birds fed 0 and 4g MOLP but significantly higher (P < 0.05) than those of the birds in 12g/kg diet. There were no significant differences (P > 0.05) in the feed intake. The serum albumin of the birds fed 12g MOLP/Kg diet (48.85g/L) was significantly (P < 0.05) higher than the mean value of those fed the control diet 0 and 8g MOLP/Kg diets having 36.05 and 37.10g/L respectively. Birds fed 12g MOLP/Kg feed recorded the lowest level of triglyceride (122.75g/L) which was significantly (P < 0.05) lower than those of the birds fed 0 and 4g/kg diet MOLP. The serum corticosterone decreased with increase in MOLP inclusion levels. The birds fed 12g MOLP had the least value. This study has shown that MOLP may contain potent antioxidants capable of ameliorating the effects of heat stress in broiler chickens with 12g MOLP inclusion.

Keywords: physiology, performance, heat stress, anti-oxidant

Procedia PDF Downloads 353
3302 Microfluidic Manipulation for Biomedical and Biohealth Applications

Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj

Abstract:

Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.

Keywords: microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications

Procedia PDF Downloads 59
3301 Border Control and Human Rights Violations: Lessons Learned from the United States and Potential Solutions for the European Union

Authors: María Elena Menéndez Ibáñez

Abstract:

After the terrorist attacks of 9/11, new measures were adopted by powerful countries and regions like the United States and the European Union in order to safeguard their security. In 2002, the US created the Department of Homeland Security with one sole objective; to protect American soil and people. The US adopted new policies that made every immigrant a potential terrorist and a threat to their national security. Stronger border control became one of the key elements of the fight against organized crime and terrorism. The main objective of this paper is to compare some of the most important and radical measures adopted by the US, even those that resulted in systematic violations of human rights, with some of the European measures adopted after the 2015 Paris attacks of 2015, such as unlawful detainment of prisoners and other measures against foreigners. Through the Schengen agreement, the European Union has tried to eliminate tariffs and border controls, in order to guarantee successful economic growth. Terrorists have taken advantage of this and have made the region vulnerable to attacks. Authorities need to strengthen their surveillance methods in order to safeguard the region and its stability. Through qualitative methods applied to social sciences, this research will also try to explain why some of the mechanisms proven to be useful in the US would not be so in Europe, especially because they would result in human rights violations. Finally, solutions will be offered that would not put the whole Schengen Agreement at risk. Europe cannot reinstate border control, without making individuals vulnerable to human rights violations.

Keywords: border control, immigration, international cooperation, national security

Procedia PDF Downloads 138
3300 Effect of Varying Diets on Growth, Development and Survival of Queen Bee (Apis mellifera L.) in Captivity

Authors: Muhammad Anjum Aqueel, Zaighum Abbas, Mubasshir Sohail, Muhammad Abubakar, Hafiz Khurram Shurjeel, Abu Bakar Muhammad Raza, Muhammad Afzal, Sami Ullah

Abstract:

Keeping in view the increasing demand, queen of Apis mellifera L. (Hymenoptera: Apidae) was reared artificially in this experiment at varying diets including royal jelly. Larval duration, pupal duration, weight, and size of pupae were evaluated at different diets including royal jelly. Queen larvae were raised by Doo Little grafting method. Four different diets were mixed with royal jelly and applied to larvae. Fructose, sugar, yeast, and honey were provided to rearing queen larvae along with same amount of royal jelly. Larval and pupal duration were longest (6.15 and 7.5 days, respectively) at yeast and shortest on honey (5.05 and 7.02 days, respectively). Heavier and bigger pupae were recorded on yeast (168.14 mg and 1.76 cm, respectively) followed by diets having sugar and honey. Due to production of heavier and bigger pupae, yeast was considered as best artificial diet for the growing queen larvae. So, in the second part of experiment, different amounts of yeast were provided to growing larvae along with fixed amount (0.5 g) of royal jelly. Survival rates of the larvae and queen bee were 70% and 40% in the 4-g food, 86.7% and 53.3% in the 6-g food, and 76.7% and 50% in the 8-g food. Weight of adult queen bee (1.459±0.191 g) and the number of ovarioles (41.7±21.3) were highest at 8 g of food. Results of this study are helpful for bee-keepers in producing fitter queen bees.

Keywords: apis melifera l, dietary effect, survival and development, honey bee queen

Procedia PDF Downloads 490
3299 The Role of Phycoremediation in the Sustainable Management of Aquatic Pollution

Authors: Raymond Ezenweani, Jeffrey Ogbebor

Abstract:

The menace of aquatic pollution has become increasingly of great concern and the effects of this pollution as a result of anthropogenic activities cannot be over emphasized. Phycoremediation is the application of algal remediation technology in the removal of harmful products from the environment. Harmful products also known as pollutants are usually introduced into the environment through variety of processes such as industrial discharge, agricultural runoff, flooding, and acid rain. This work has to do with the capability of algae in the efficient removal of different pollutants, ranging from hydrocarbons, eutrophication, agricultural chemicals and wastes, heavy metals, foul smell from septic tanks or dumps through different processes such as bioconversion, biosorption, bioabsorption and biodecomposition. Algae are capable of bioconversion of environmentally persistent compounds to degradable compounds and also capable of putting harmful bacteria growth into check in waste water remediation. Numerous algal organisms such as Nannochloropsis spp, Chlorella spp, Tetraselmis spp, Shpaerocystics spp, cyanobacteria and different macroalgae have been tested by different researchers in laboratory scale and shown to have 100% efficiency in environmental remediation. Algae as a result of their photosynthetic capacity are also efficient in air cleansing and management of global warming by sequestering carbon iv oxide in air and converting it into organic carbon, thereby making food available for the other organisms in the higher trophic level of the aquatic food chain. Algae play major role in the sustenance of the aquatic ecosystem by their virtue of being photosynthetic. They are the primary producers and their role in environmental sustainability is remarkable.

Keywords: Algae , Pollutant, ., Phycoremediation, Aquatic, Sustainability

Procedia PDF Downloads 126
3298 Development of LSM/YSZ Composite Anode Materials for Solid Oxide Electrolysis Cells

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

Solid oxide electrolysis cell (SOEC) is a promising technology for hydrogen production that will contribute to the sustainable energy of the future. An important component of this SOEC is the anode material and one of the promising anode material for such application is the Sr-doped LaMnO3 (LSM) and Yttrium-stabilized ZrO2 (YSZ) composite material. In this study, LSM/YSZ with different weight percent compositions of LSM and YSZ were synthesized using solid-state reaction method. The obtained samples, 60LSM/40YSZ, 50LSM/50YSZ, and 40LSM/60YSZ, were fully characterized for its microstructure using X-ray diffraction, FTIR, and SEM/EDS. EDS analysis confirmed the elemental composition and distribution of the synthesized samples. Surface morphology of the sample using SEM exhibited a well sintered and densified samples and revealed a beveled cube-like LSM morphology while the YSZ phase appeared to have a sphere-like microstructure. Density measurements using Archimedes principle showed relative densities greater than 90%. In addition, AC impedance measurement of the synthesized samples have been investigated at intermediate temperature range (400-700 °C) in an inert and oxygen gas flow environment. At pure states, LSM exhibited a high electronic conductivity while YSZ demonstrated an ionic conductivity of 3.25 x 10-4 S/cm at 700 °C under Oxygen gas environment with calculated activation energy of 0.85eV. The composite samples were also studied and revealed that as the YSZ content of the composite electrode increases, the total conductivity decreases.

Keywords: ceramic composites, fuel cells, strontium lanthanum manganite, yttria partially-stabilized zirconia

Procedia PDF Downloads 313
3297 Sequential Release of Dual Drugs Using Thermo-Sensitive Hydrogel for Tumor Vascular Inhibition and to Enhance the Efficacy of Chemotherapy

Authors: Haile F. Darge, Hsieh C. Tsai

Abstract:

The tumor microenvironment affects the therapeutic outcomes of cancer disease. In a malignant tumor, overexpression of vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks. This results in a hostile tumor environment that hinders anti-cancer drug activities and profoundly fuels tumor progression. In this study, we develop a strategy of sequential sustain release of the anti-angiogenic drug: Bevacizumab(BVZ), and anti-cancer drug: Doxorubicin(DOX) which had a synergistic effect on cancer treatment. Poly (D, L-Lactide)- Poly (ethylene glycol) –Poly (D, L-Lactide) (PDLLA-PEG-PDLLA) thermo-sensitive hydrogel was used as a vehicle for local delivery of drugs in a single platform. The in vitro release profiles of the drugs were investigated and confirmed a relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) for a prolonged period. The cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. The in vivo study on Hela xenograft nude mice verified that hydrogel co-loaded with BVZ and DOX displayed the highest tumor suppression efficacy for up to 36 days with pronounce anti-angiogenic effect of BVZ and with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drugs by the hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.

Keywords: anti-angiogenesis, chemotherapy, controlled release, thermo-sensitive hydrogel

Procedia PDF Downloads 134
3296 Effect of Gas Boundary Layer on the Stability of a Radially Expanding Liquid Sheet

Authors: Soumya Kedia, Puja Agarwala, Mahesh Tirumkudulu

Abstract:

Linear stability analysis is performed for a radially expanding liquid sheet in the presence of a gas medium. A liquid sheet can break up because of the aerodynamic effect as well as its thinning. However, the study of the aforementioned effects is usually done separately as the formulation becomes complicated and is difficult to solve. Present work combines both, aerodynamic effect and thinning effect, ignoring the non-linearity in the system. This is done by taking into account the formation of the gas boundary layer whilst neglecting viscosity in the liquid phase. Axisymmetric flow is assumed for simplicity. Base state analysis results in a Blasius-type system which can be solved numerically. Perturbation theory is then applied to study the stability of the liquid sheet, where the gas-liquid interface is subjected to small deformations. The linear model derived here can be applied to investigate the instability for sinuous as well as varicose modes, where the former represents displacement in the centerline of the sheet and the latter represents modulation in sheet thickness. Temporal instability analysis is performed for sinuous modes, which are significantly more unstable than varicose modes, for a fixed radial distance implying local stability analysis. The growth rates, measured for fixed wavenumbers, predicated by the present model are significantly lower than those obtained by the inviscid Kelvin-Helmholtz instability and compare better with experimental results. Thus, the present theory gives better insight into understanding the stability of a thin liquid sheet.

Keywords: boundary layer, gas-liquid interface, linear stability, thin liquid sheet

Procedia PDF Downloads 229
3295 Dual Drug Piperine-Paclitaxel Nanoparticles Inhibit Migration and Invasion in Human Breast Cancer Cells

Authors: Monika Verma, Renuka Sharma, B. R. Gulati, Namita Singh

Abstract:

In combination therapy, two chemotherapeutic agents work together in a collaborative action. It has appeared as one of the promising approaches to improve anti-cancer treatment efficacy. In the present investigation, piperine (P-NPS), paclitaxel (PTX NPS), and a combination of both, piperine-paclitaxel nanoparticle (Pip-PTX NPS), were made by the nanoprecipitation method and later characterized by PSA, DSC, SEM, TEM, and FTIR. All nanoparticles exhibited a monodispersed size distribution with a size of below 200 nm, zeta potential ranges from (-30-40mV) and a narrow polydispersity index (>0.3) of the drugs. The average encapsulation efficiency was found to be between 80 and 90%. In vitro release of drugs for nanoparticles was done spectrophotometrically. FTIR and DSC results confirmed the presence of the drug. The Pip-PTX NPS significantly inhibit cell proliferation as compared to the native drugs nanoparticles in the breast cancer cell line MCF-7. In addition, Pip-PTX NPS suppresses cells in colony formation and soft gel agar assay. Scratch migration and Transwell chamber invasion assays revealed that combined nanoparticles reduce the migration and invasion of breast cancer cells. Morphological studies showed that Pip-PTX NPS penetrates the cells and induces apoptosis, which was further confirmed by DNA fragmentation, SEM, and western blot analysis. Taken together, Pip-PTX NPS inhibits cell proliferation, anchorage dependent and anchorage independent cell growth, reduces migration and invasion, and induces apoptosis in cells. These findings support that combination therapy using Pip-PTX NPS represents a potential approach and could be helpful in the future for breast cancer therapy.

Keywords: piperine, paclitaxel, breast cancer, apoptosis

Procedia PDF Downloads 101
3294 Production of Pour Point Depressant for Paraffinic Crude Oils

Authors: Mosaad Attia Elkasaby

Abstract:

The crude oil contains paraffines, aromatics, and asphaltenes in addition to some organic impurities, with increasing demands to reduce the cost of crude oil production, the uses of a pour point depressant is mandatory to maintain good flow rate. The wax materials cause many problems during production, storage, and transport, especially at low temperature, as these waxes tend, at low temperatures, to precipitate on the wall lines, thus leads to the high viscosity of crude oil and impede the flow rate, which represents an additional burden for crude oil pumping system from the place of production to the refinery. There are many ways to solve this problem, including, but not limited to, heat the crude and the use of organic solvents. But one of the most important disadvantages of these methods is the high economic cost. The aim of this innovation is to manufacture some polymeric materials (polymers based on aniline) that are processed locally that can be used as a pour point depressant of crude oil. For the first time, polymer based on aniline is modified and used with a number of organic solvents and tested with solvent (Styrene). It was found that the polymer based on aniline, when modified, had full solubility in styrene, unlike other organic solvent that was used in the past, such as chloroform and toluene. We also used a new solvent (PONA) that is obtained from the process of hydrotreating and separation of straight run naphtha to dissolve polymer based on aniline as a pour point depressant of crude oil. This innovative include studies conducted on highly paraffinic crude oil (C.O.1 and C.O.2). On using concentration (2500 ppm) of polymer based on aniline, the pour point of crude oil has decreased from +33 to - 9°C in case of crude oil (C.O.1) and from + 42 to – 6°C in case crude oil (C.O.2) at the same concentration.

Keywords: PPD, aniline, paraffinic crude oils, polymers

Procedia PDF Downloads 93