Search results for: drying kinetics
263 Liquid Tin(II) Alkoxide Initiators for Use in the Ring-Opening Polymerisation of Cyclic Ester Monomers
Authors: Sujitra Ruengdechawiwat, Robert Molloy, Jintana Siripitayananon, Runglawan Somsunan, Paul D. Topham, Brian J. Tighe
Abstract:
The main aim of this research has been to design and synthesize some completely soluble liquid tin(II) alkoxide initiators for use in the ring-opening polymerisation (ROP) of cyclic ester monomers. This is in contrast to conventional tin(II) alkoxides in solid form which tend to be molecular aggregates and difficult to dissolve. The liquid initiators prepared were bis(tin(II) monooctoate) diethylene glycol ([Sn(Oct)]2DEG) and bis(tin(II) monooctoate) ethylene glycol ([Sn(Oct)]2EG). Their efficiencies as initiators in the bulk ROP of ε-caprolactone (CL) at 130oC were studied kinetically by dilatometry. Kinetic data over the 20-70% conversion range was used to construct both first-order and zero-order rate plots. It was found that the rate data fitted more closely to first-order kinetics with respect to the monomer concentration and gave higher first-order rate constants than the corresponding tin(II) octoate/diol initiating systems normally used to generate the tin(II) alkoxide in situ. Since the ultimate objective of this work is to produce copolymers suitable for biomedical use as absorbable monofilament surgical sutures, poly(L-lactide-co-ε-caprolactone) 75:25 mol %, P(LL-co-CL), copolymers were synthesized using both solid and liquid tin(II) alkoxide initiators at 130°C for 48 hrs. The statistical copolymers were obtained in near-quantitative yields with compositions (from 1H-NMR) close to the initial comonomer feed ratios. The monomer sequencing (from 13C-NMR) was partly random and partly blocky (gradient-type) due to the much differing monomer reactivity ratios (rLL >> rCL). From GPC, the copolymers obtained using the soluble liquid tin(II) alkoxides were found to have higher molecular weights (Mn = 40,000-100,000) than those from the only partially soluble solid initiators (Mn = 30,000-52,000).Keywords: biodegradable polyesters, poly(L-lactide-co-ε-caprolactone), ring-opening polymerisation, tin(II) alkoxide
Procedia PDF Downloads 194262 Effect of In-Season Linear Sprint Training on Sprint Kinematics of Amateur Soccer Players
Authors: Avinash Kharel
Abstract:
Background: - Linear sprint training is one possible approach to developing sprint performance, a crucial skill to focus on in soccer. Numerous methods, including various on-field training options, can be employed to attain this goal. However, the effect of In-season linear sprint training on sprint performance and related kinetics changes are unknown in a professional setting. The study aimed to investigate the effect of in-season linear sprint training on the sprint kinematics of amateur soccer players. Methods: - After familiarization, a 4-week training protocol was completed with sprint performance and Force Velocity (FV) profiles was compared before and after the training. Eighteen amateur soccer male players (Age 22 ± 2 years: Height: 178 ± 7cm; body-mass: 74 ± 8 Kg, 30-m split-time: 4.398 ± s) participated in the study. Sprint kinematics variables, including maximum Sprint Velocity (V0), Theoretical Maximum Force (F0), Maximum Force Output per kilogram of body weight (N/KG), Maximum Velocity (V(0)), Maximum Power Output (P MAX (W)), Ratio of Force to Velocity (FV), and Ratio of Force to Velocity at Peak power were measured. Results: - Results showed significant improvements in Maximum Sprint Velocity (p<0.01, ES=0.89), Theoretical Maximum Force (p<0.05, ES=0.50), Maximum Force Output per kilogram of body weight (p<0.05, ES=0.42), Maximum Power Output (p<0.05, ES=0.52), and Ratio of Force to Velocity at Peak Power (RF PEAK) (p<0.05, ES=0.44) post-training. There were no significant changes in the ratio of Force to Velocity (FV) and Maximum Velocity V (0) post-training (p>0.05). Conclusion: - These findings suggest that In-season linear sprint training can effectively improve certain sprint kinematics variables in amateur soccer players. Coaches and players should consider incorporating linear sprint training into their in-season training programs to improve sprint performance.Keywords: sprint performance, training intervention, soccer, kinematics
Procedia PDF Downloads 73261 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis
Authors: Ganbat Danaa, Chuluundorj Puntsag
Abstract:
The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.Keywords: corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability
Procedia PDF Downloads 67260 Development and Evaluation of Dehydrated Soups with Frog Meat by Freeze Drying
Authors: Sílvia Pereira Mello, Eliane Rodrigues, Maria de Lourdes Andrade, Marcelo Pereira, Giselle Dias, Jose Seixas Filho
Abstract:
Frog meat is a highly digestible food and its use is recommended in diets aimed at fighting cholesterol, obesity, and arterial hypertension, as well as for treating gastrointestinal disorders. In this study, the soups were developed with frog meat in addition to other ingredients which did not present allergenic potential. The carcasses of the thawed frogs went through bleaching and deboning, and other ingredients (vegetables and condiments) were then added to the separated meat. After the process of cooking, the soups were cooled and later on frozen at -40° C for 3 hours and then taken to the LS 3000 B lyophilizer for 24 hours. The soups were submitted to microbiological analysis: enumeration of total coliforms and Bacillus cereus; identification of coagulase positive Staphylococcus; isolation and identification of Salmonella spp.; and physical-chemical analysis; application of micro-Kjeldahl method for protein, Soxhlet method for lipids, use of a heating chamber at 105ºC for moisture, incineration method (500-550°C) for ash, and Decagon's Pawkit equipment for determining water activity. Acceptance test was performed with 50 elderly people, all between 60 and 85 years of age. The degree of acceptance was demonstrated using a seven points structured hedonic scale in which the taster expressed their impression towards the product. Results of the microbiological analysis showed that all samples met the standards established by the National Health Surveillance Agency of Brazil (ANVISA). Results of the acceptance test indicated that all the soups were accepted considering overall impression and intended consumption. In addition to its excellent nutritional quality, the dehydrated soups made with frog meat are presented as a solution for consumers due to convenience in preparation, consumption and storage.Keywords: bacteriological quality, lithobates catesbeianus, instant soup, proximate composition, sensory analysis
Procedia PDF Downloads 115259 Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter
Authors: Aka S. Koffi, N’Goran Yao, Philippe Bastide, Denis Bruneau, Diby Kadjo
Abstract:
Cocoa beans (Theobroma cocoa L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize the product is still hard to perform. Automatic fermenters are not rentable for most of producers. Heat (T>45°C) and acidity produced during the fermentation by microbiology activity of yeasts and bacteria are enabling the emergence of potential flavor and taste of future chocolate. In this study, a cylindro-rotative fermenter (FCR-V1) has been built and coconut fibers were used in its structure to confine heat. An axis of rotation (360°) has been integrated to facilitate the turning and homogenization of beans in the fermenter. This axis permits to put fermenter in a vertical position during the anaerobic alcoholic phase of fermentation, and horizontally during acetic phase to take advantage of the mid height filling. For circulation of air flow during turning in acetic phase, two woven rattan with grid have been made, one for the top and second for the bottom of the fermenter. In order to reduce air flow during acetic phase, two airtight covers are put on each grid cover. The efficiency of the turning by this kind of rotation, coupled with homogenization of the temperature, caused by the horizontal position in the acetic phase of the fermenter, contribute to having a good proportion of well-fermented beans (83.23%). In addition, beans’pH values ranged between 4.5 and 5.5. These values are ideal for enzymatic activity in the production of the aromatic compounds inside beans. The regularity of mass loss during all fermentation makes it possible to predict the drying surface corresponding to the amount being fermented.Keywords: cocoa fermentation, fermenter, microbial activity, temperature, turning
Procedia PDF Downloads 261258 Characterization of Sorption Behavior and Mass Transfer Properties of Four Central Africa Tropical Woods
Authors: Merlin Simo Tagne, Romain Rémond
Abstract:
This study provides the sorption isotherm, its hysteresis and their mass transfer properties of four Central Africa Tropical woods largely used for building construction: frake, lotofa, sapelle and ayous. Characterization of these three species in particular and Central Africa tropical woods, in general, was necessary to develop conservation and treatment of wood after first transformation using the drying. Isotherms were performed using a dynamic vapor sorption apparatus (Surface Measurement Systems) at 20 and 40°C. The mass diffusivity was determined in steady state using a specific vapometer. Permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability and mass transfer properties are determined in the tangential direction with a ‘false’ quartersawn cutting (sapelle and lotofa) and in the radial direction with a ‘false’ flatsawn cutting (ayous and frake). The sample of sapelle, ayous and frake are heartwood when lotofa contains as well as heartwood than sapwood. Results obtained showed that the temperature effect on sorption behavior was low than relative humidity effect. We also observed a low difference between the sorption behavior of our woods and hysteresis of sorption decreases when the temperature increases. Hailwood-Horrobin model’s predicts the isotherms of adsorption and desorption of ours woods and parameters of this model are proposed. Results on the characterization of mass transfer properties showed that, in the steady state, mass diffusivity decreases exponentially when basal density increases. In the phase of desorption, mass diffusivity is great than in the phase of adsorption. The permeability of ours woods are greater than Australian hardwoods but lower than temperate woods. It is difficult to define a relationship between permeability and mass diffusivity.Keywords: tropical woods, sorption isotherm, diffusion coefficient, gas permeability, Central Africa
Procedia PDF Downloads 496257 Kinetics of Phytochemicals and Antioxidant Activity during Thermal Treatment of Cape Gooseberry (Physalis peruviana L)
Authors: Mary-Luz Olivares-Tenorio, Ruud Verkerk, Matthijs Dekker, Martinus A. J. S. van Boekel
Abstract:
Cape gooseberry, the fruit of the plant Physalis peruviana L. has gained interest in research given its contents of promising health-promoting compounds like contents. The presence of carotenoids, ascorbic acid, minerals, polyphenols, vitamins and antioxidants. This project aims to study thermal stability of β-carotene, ascorbic acid, catechin and epicatechin and antioxidant activity in the matrix of the Cape Gooseberry. Fruits were obtained from a Colombian field in Cundinamarca. Ripeness stage was 4 (According to NTC 4580, corresponding to mature stage) at the moment of the experiment. The fruits have been subjected to temperatures of 40, 60, 80, 100 and 120°C for several times. β-Carotene, ascorbic acid, catechin and epicatechin content were assessed with HPLC and antioxidant activity with the DPPH method. β-Carotene was stable upon 100°C, and showed some degradation at 120°C. The same behavior was observed for epicatechin. Catechin increased during treatment at 40°C, at 60°C it remained stable and it showed degradation at 80°C, 100°C and 120°C that could be described by a second order kinetic model. Ascorbic acid was the most heat-sensitive of the analyzed compounds. It showed degradation at all studied temperatures, and could be described by a first order model. The activation energy for ascorbic acid degradation in cape gooseberry was 46.0 kJ/mol and its degradation rate coefficient at 100 °C was 6.53 x 10-3 s-1. The antioxidant activity declined for all studied temperatures. Results from this study showed that cape gooseberry is an important source of different health-promoting compounds and some of them are stable to heat. That makes this fruit a suitable raw material for processed products such as jam, juices and dehydrated fruit, giving the consumer a good intake of these compounds.Keywords: goldenberry, health-promoting compounds, phytochemical, processing, heat treatment
Procedia PDF Downloads 452256 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks
Authors: Andrew C. Eloka Eboka, Freddie L. Inambao
Abstract:
Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond
Procedia PDF Downloads 363255 Bioaccessible Phenolics, Phenolic Bioaccessibilities and Antioxidant Activities of Cookies Supplemented with Pumpkin Flour
Authors: Emine Aydin, Duygu Gocmen
Abstract:
In this study, pumpkin flours (PFs) were used to replace wheat flour in cookie formulation at three different levels (10%, 20% and 30% w/w). For this purpose PFs produced by two different applications (with or without metabisulfite pre-treatment) and then dried in freeze dryer. Control sample included no PFs. The total phenolic contents of the cookies supplemented with PFs were higher than that of control and gradually increased in total phenolic contents of cookies with increasing PF supplementation levels. Phenolic content makes also significant contribution on nutritional excellence of the developed cookies. Pre-treatment with metabisulfite (MS) had a positive effect on free, bound and total phenolics of cookies which are supplemented with various levels of MS-PF. This is due to a protective effect of metabisulfite pretreatment for phenolic compounds in the pumpkin flour. Phenolic antioxidants may act and absorb in a different way in humans and thus their antioxidant and health effects will be changed accordingly. In the present study phenolics’ bioavailability of cookies was investigated in order to assess PF as sources of accessible phenolics. The content of bioaccessible phenolics and phenolic bioaccessibility of cookies supplemented with PFs had higher than those of control sample. Cookies enriched with 30% MS-PF had the highest bioaccessible phenolics (597.86 mg GAE 100g-1) and phenolic bioaccessibility (41.71%). MS application in PF production caused a significant increase in phenolic bioaccessibility of cookies. According to all assay (ABTS, CUPRAC, FRAP and DPPH), antioxidant activities of cookies with PFs higher than that of control cookie. It was also observed that the cookies supplemented with MS-PF had significantly higher antioxidant activities than those of cookies including PF. In presented study, antioxidative bioaccessibilities of cookies were also determined. The cookies with PFs had significantly (p ≤ 0.05) higher antioxidative bioaccessibilities than control ones. Increasing PFs levels enhanced antioxidative bioaccessibilities of cookies. As a result, PFs addition improved the nutritional and functional properties of cookie by causing increase in antioxidant activity, total phenolic content, bioaccessible phenolics and phenolic bioaccessibilities.Keywords: phenolic compounds, antioxidant activity, dietary fiber, pumpkin, freeze drying, cookie
Procedia PDF Downloads 258254 Formulation and Evaluation of Metformin Hydrochloride Microparticles via BÜCHI Nano-Spray Dryer B-90
Authors: Tamer Shehata
Abstract:
Recently, nanotechnology acquired a great interest in the field of pharmaceutical production. Several pharmaceutical equipment were introduced into the research field for production of nanoparticles, among them, BÜCHI’ fourth generation nano-spray dryer B-90. B-90 is specialized with single step of production and drying of nano and microparticles. Currently, our research group is investigating several pharmaceutical formulations utilizing BÜCHI Nano-Spray Dryer B-90 technology. One of our projects is the formulation and evaluation of metformin hydrochloride mucoadhesive microparticles for treatment of type 2-diabetis. Several polymers were investigated, among them, gelatin and sodium alginate. The previous polymers are natural polymers with mucoadhesive properties. Preformulation studies such as atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension were performed. Postformulation characters such as particle size, flowability, surface scan and dissolution profile were evaluated. Finally, the pharmacological activity of certain selected formula was evaluated in streptozotocin-induced diabetic rats. B-90’spray head was 7 µm hole heated to 120 with air flow rate 3.5 mL/min. The viscosity of the solution was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Successfully, discrete, non-aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and Sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula showed a significant reduction of blood glucose level over 24 h. In conclusion, mucoadhesive metformin hydrochloride microparticles obtained from B-90 could offer a convenient dosage form with enhanced hypoglycemic activity.Keywords: mucoadhesive, microparticles, metformin hydrochloride, nano-spray dryer
Procedia PDF Downloads 311253 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel
Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam
Abstract:
The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.Keywords: residues, date palm stalks, chopper, briquetting, quality properties
Procedia PDF Downloads 549252 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions
Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka
Abstract:
Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68
Procedia PDF Downloads 134251 Deltamethrin-Induces Oxidative Stress to the Freshwater Ciliate Model: Paramecium tetraurelia
Authors: Amamra Ryma, Djebar Mohamed Reda, Moumeni Ouissem, Otmani Hadjer, Berrebbah Houria
Abstract:
The problem of environmental contamination by the excessive use of organics cannot be neglected. Extensive application is usually companied with serious problems and health risk. It is established that many chemicals, in common use, can produce some toxic effects on biological systems through their mode of action or by production of free radicals that damage all cell compounds. Deltamethrin, a widely used type II pyrethroid pesticide, is one of the most common contaminants in freshwater aquatic system. In this study, we investigate the effects of deltamethrin exposure on the induction of oxidative stress to the freshwater ciliate Paramecium tetraurelia. After the treatment of paramecium cells with increasing concentrations of insecticide, we followed up the growth kinetics, generation time and the percentage response. Also, we studied the variation in biomarkers of stress such as: GSH content, GST, GPX and CAT activities. Our results showed a significant decrease in the proliferation of cells correlated by the decrease in generation number and the increase in generation time. Also, we noted an inhibition in the percentage response. The monitoring of biomarkers revealed depletion in GSH content in a proportional and dose dependent manner accompanied by an increase in the GST activity. In parallel, a strong induction in the CAT and GPX activities was noted specially for the highest dose. In summary, under the current experimental conditions, deltamethrin is highly toxic to the freshwater ciliate Paramecium tetraurelia. Exposure to low concentrations showed significant adverse on growth accompanied with the induction of oxidative damage supported by the decrease in GSH content and the intensification of the antioxidant enzymes.Keywords: deltamethrin, Paramecium tetraurelia, growth, oxidative stress, biomarkers, antioxidant
Procedia PDF Downloads 467250 Extraction and Encapsulation of Carotenoids from Carrot
Authors: Gordana Ćetković, Sanja Podunavac-Kuzmanović, Jasna Čanadanović-Brunet, Vesna Tumbas Šaponjac, Vanja Šeregelj, Jelena Vulić, Slađana Stajčić
Abstract:
The color of food is one of the decisive factors for consumers. Potential toxicity of artificial food colorants has led to the consumers' preference for natural products over products with artificial colors. Natural pigments have many bioactive functions, such as antioxidant, provitamin and many other. Having this in mind, the acceptability of natural colorants by the consumers is much higher. Being present in all photosynthetic plant tissues carotenoids are probably most widespread pigments in nature. Carrot (Daucus carota) is a good source of functional food components. Carrot is especially rich in carotenoids, mainly α- and β-carotene and lutein. For this study, carrot was extracted using classical extraction with hexane and ethyl acetate, as well as supercritical CO₂ extraction. The extraction efficiency was evaluated by estimation of carotenoid yield determined spectrophotometrically. Classical extraction using hexane (18.27 mg β-carotene/100 g DM) was the most efficient method for isolation of carotenoids, compared to ethyl acetate classical extraction (15.73 mg β-carotene/100 g DM) and supercritical CO₂ extraction (0.19 mg β-carotene/100 g DM). Three carrot extracts were tested in terms of antioxidant activity using DPPH and reducing power assay as well. Surprisingly, ethyl acetate extract had the best antioxidant activity on DPPH radicals (AADPPH=120.07 μmol TE/100 g) while hexane extract showed the best reducing power (RP=1494.97 μmol TE/100 g). Hexane extract was chosen as the most potent source of carotenoids and was encapsulated in whey protein by freeze-drying. Carotenoid encapsulation efficiency was found to be high (89.33%). Based on our results it can be concluded that carotenoids from carrot can be efficiently extracted using hexane and classical extraction method. This extract has the potential to be applied in encapsulated form due to high encapsulation efficiency and coloring capacity. Therefore it can be used for dietary supplements development and food fortification.Keywords: carotenoids, carrot, extraction, encapsulation
Procedia PDF Downloads 271249 Sensory and Microbiological Sustainability of Smoked Meat Products–Smoked Ham in Order to Determine the Shelf-Life under the Changed Conditions at +15°C
Authors: Radovan Čobanović, Milica Rankov Šicar
Abstract:
The meat is in the group of perishable food which can be spoiled very rapidly if stored at room temperature. Salting in combination with smoke is intended to extend shelf life, and also to form the specific taste, odor and color. The smoke do not affect only on taste and flavor of the product, it has a bactericidal and oxidative effect and that is the reason because smoked products are less susceptible to oxidation and decay processes. According to mentioned the goal of this study was to evaluate shelf life of smoked ham, which is stored in conditions of high temperature (+15 °C). For the purposes of this study analyzes were conducted on eight samples of smoked ham every 7th day from the day of reception until 21st day. During this period, smoked ham is subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp. and yeasts and molds) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579 and yeasts and molds ISO 21527-2. Results of sensory analysis of smoked ham indicating that the samples after the first seven days of storage showed visual changes at the surface in the form of allocations of salt, most likely due to the process of drying out the internal parts of the product. The sample, after fifteen days of storage had intensive exterior changes, but the taste was still acceptable. Between the fifteenth and twenty-first day of storage, there is an unacceptable change on the surface and inside of the product and the occurrence of molds and yeasts but neither one analyzed pathogen was found. Based on the obtained results it can be concluded that this type of product cannot be stored for more than seven days at an elevated temperature of +15°C because there are a visual changes that would certainly have influence on decision of customers when purchase of this product is concerned.Keywords: sustainability, smoked meat products, food engineering, agricultural process engineering
Procedia PDF Downloads 360248 Processing and Economic Analysis of Rain Tree (Samanea saman) Pods for Village Level Hydrous Bioethanol Production
Authors: Dharell B. Siano, Wendy C. Mateo, Victorino T. Taylan, Francisco D. Cuaresma
Abstract:
Biofuel is one of the renewable energy sources adapted by the Philippine government in order to lessen the dependency on foreign fuel and to reduce carbon dioxide emissions. Rain tree pods were seen to be a promising source of bioethanol since it contains significant amount of fermentable sugars. The study was conducted to establish the complete procedure in processing rain tree pods for village level hydrous bioethanol production. Production processes were done for village level hydrous bioethanol production from collection, drying, storage, shredding, dilution, extraction, fermentation, and distillation. The feedstock was sundried, and moisture content was determined at a range of 20% to 26% prior to storage. Dilution ratio was 1:1.25 (1 kg of pods = 1.25 L of water) and after extraction process yielded a sugar concentration of 22 0Bx to 24 0Bx. The dilution period was three hours. After three hours of diluting the samples, the juice was extracted using extractor with a capacity of 64.10 L/hour. 150 L of rain tree pods juice was extracted and subjected to fermentation process using a village level anaerobic bioreactor. Fermentation with yeast (Saccharomyces cerevisiae) can fasten up the process, thus producing more ethanol at a shorter period of time; however, without yeast fermentation, it also produces ethanol at lower volume with slower fermentation process. Distillation of 150 L of fermented broth was done for six hours at 85 °C to 95 °C temperature (feedstock) and 74 °C to 95 °C temperature of the column head (vapor state of ethanol). The highest volume of ethanol recovered was established at with yeast fermentation at five-day duration with a value of 14.89 L and lowest actual ethanol content was found at without yeast fermentation at three-day duration having a value of 11.63 L. In general, the results suggested that rain tree pods had a very good potential as feedstock for bioethanol production. Fermentation of rain tree pods juice can be done with yeast and without yeast.Keywords: fermentation, hydrous bioethanol, fermentation, rain tree pods, village level
Procedia PDF Downloads 295247 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth
Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos
Abstract:
Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.Keywords: tissue engineering, PHBHV, stem cells, cellular attachment
Procedia PDF Downloads 210246 Keratin Fiber Fabrication from Biowaste for Biomedical Application
Authors: Ashmita Mukherjee, Yogesh Harishchandra Kabutare, Suritra Bandyopadhyay, Paulomi Ghosh
Abstract:
Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding.Keywords: biomaterial, biowaste, fiber, keratin
Procedia PDF Downloads 194245 DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks
Authors: Mao-Sheng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies.Keywords: DFT, MOFs, CO₂ capture, catalyst
Procedia PDF Downloads 28244 Improving Food Security and Commercial Development through Promotion of High Value Medicinal and Industrial Plants in the Swat Valley of Pakistan
Authors: Hassan Sher
Abstract:
Agriculture has a pivotal role in Pakistan’s economy, accounting for about one-fourth of the GDP and employing almost half the population. However, the competitiveness, productivity, growth, employment potential, export opportunity, and contribution to GDP of the sector is significantly hampered by agriculture marketing laws/regulations at the provincial level that reward rent seeking behavior, promote monopoly power, artificially reduce farmer incomes while inflating prices to consumers, and act as disincentives to investment. Although of more recent vintage than some other provincial agricultural marketing laws, the NWFP Agricultural and Livestock Produce Markets Act, 2007 is a throwback to a colonial paradigm, where restrictions on agricultural produce marketing and Government control of distribution channels is the norm. The Swat Valley (in which we include its tributary valleys) is an area of Pakistan in which there is poverty is both extreme and pervasive. For many, a significant portion of the family’s income comes from selling plants that are used as herbs, medicines, and perfumes. Earlier studies have shown that the benefit they derive from this work is less than they might because of: Lack of knowledge concerning which plants and which plant parts are valuable, Lack of knowledge concerning optimal preservation and storage of material, illiteracy. Another concern that much of the plant material sold from the valley is collected in the wild, without an appreciation of the negative impact continued collecting has on wild populations. We propose: Creating colored cards to help inhabitants recognize the 25 most valuable plants in their area; Developing and sharing protocols for growing the 25 most valuable plants in a home garden; Developing and sharing efficient mechanisms for drying plants so they do not lose value; Encouraging increased literacy by incorporating numbers and a few words in the handouts.Keywords: food security, medicinal plants, industrial plants, economic development
Procedia PDF Downloads 326243 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol
Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov
Abstract:
The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.Keywords: liquid crystals, polymers, small-angle scattering, optical properties
Procedia PDF Downloads 617242 Development of Carrot Puree with Algae for the Elderly with Dysphagia
Authors: Obafemi Akinwotu, Aylin Tas, Tony Taylor, Bukola Onarinde
Abstract:
The study was conducted to explore the methods and tools to improve texture and preserve the total phenolic and antioxidant compounds of dysphagia foods produced from carrot-based puree with decolourised Chlorella algae. Textural properties (Texture profile analysis [TPA]; the International Dysphagia Diet Standardization Initiative, particle size test [PST]) and rheological properties (viscosity and viscoelastic properties) of carrot puree defrosted by different treatments (microwave, steamer, oven), were characterised using hydrocolloids (guar gum, k. carrageenan, and xanthan gum), and the results were compared to a level 4 commercial sample. DPPH (2,2-diphenyl-1-picrylhydrazyl) antiradical scavenging radicals and total phenolic contents were employed to evaluate the total phenolics, and radical scavenging properties of defrosted carrot puree sonicated carrot puree (20 Hz, 30 min, 60 oC), and vacuum-dried carrot powder with the addition of algae. Results show that the viscosity, viscoelasticity test, TPA, and PST of the commercial sample were comparable to those of guar gum and xanthan gum containing puree, suggesting that they could be used as dysphagia diets. There was no noticeable decolourisation of the Chlorella pigment. Additionally, the use of the microwave, stemmer, and oven for defrosting treatment had an impact on the textural characteristics of the moulded samples upon cooling and also contributed to the reduction in the total phenolic and antioxidant properties of the samples. Sonication treatments of algae exposure reduced the cloudiness of the green pigment and lightened the colour of the samples containing algae, and they also reduced the drying time from 2.5 to 1.5 hours during the preliminary work. The low-temperature vacuum- and freeze-dried samples increased the concentration of the powder and resulted in an increase in the total phenolic content of the dry samples. The dried products may therefore have the potential to become more nutrient-dense to benefit the health of individuals with dysphagia.Keywords: dysphagia, elderly, hydrocolloids, carrot puree
Procedia PDF Downloads 63241 Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore
Authors: Alafara A. Baba, Kuranga I. Ayinla, Folahan A. Adekola, Rafiu B. Bale
Abstract:
Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided.Keywords: chalcopyrite ore, Nigeria, copper, copper oxide, solvent extraction
Procedia PDF Downloads 393240 Thermoluminescence Study of Cu Doped Lithium Tetra Borate Samples Synthesized by Water/Solution Assisted Method
Authors: Swarnapriya Thiyagarajan, Modesto Antonio Sosa Aquino, Miguel Vallejo Hernandez, Senthilkumar Kalaiselvan Dhivyaraj, Jayaramakrishnan Velusamy
Abstract:
In this paper the lithium tetra borate (Li2B4O7) was prepared by used water/solution assisted synthesis method. Once finished the synthesization, Copper (Cu) were used to doping material with Li2B4O7 in order to enhance its thermo luminescent properties. The heating temperature parameters were 750°C for 2 hr and 150°C for 2hr. The samples produced by water assisted method were doped at different doping percentage (0.02%, 0.04%, 0.06%, 0.08%, 0.12%, 0.5%, 0.1%, and 1%) of Cu.The characteristics and identification of Li2B4O7 (undoped and doped) were determined in four tests. They are X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Ultra violet visible spectroscopy (UV Vis). As it is evidence from the XRD and SEM results the obtained Li2B4O7 and Li2B4O7 doping with Cu was confirmed and also confirmed the chemical compositition and their morphologies. The obtained lithium tetraborate XRD pattern result was verified with the reference data of lithium tetraborate with tetragonal structure from JCPDS. The glow curves of Li2B4O7 and Li2B4O7 : Cu were obtained by thermo luminescence (TLD) reader (Harshaw 3500). The pellets were irradiated with different kind of dose (58mGy, 100mGy, 500mGy, and 945mGy) by using an X-ray source. Finally this energy response was also compared with TLD100. The order of kinetics (b), frequency factor (S) and activation energy (E) or the trapping parameters were calculated using peak shape method. Especially Li2B4O7: Cu (0.1%) presents good glow curve in all kind of doses. The experimental results showed that this Li2B4O7: Cu could have good potential applications in radiation dosimetry. The main purpose of this paper is to determine the effect of synthesis on the TL properties of doped lithium tetra borate Li2B4O7.Keywords: dosimetry, irradiation, lithium tetraborate, thermoluminescence
Procedia PDF Downloads 276239 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds
Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia
Abstract:
Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.Keywords: α-Alumina, combustion, phase transformation, seeding
Procedia PDF Downloads 393238 How to Prevent From Skin Complications in Diabetes Type 2 in View Point of Student of Shiraz University of Medical Sciences
Authors: Zahra Abdi, Roghayeh Alipour, Babak Farahi Ghasraboonasr
Abstract:
Introduction: Diabetes is a serious medical condition that requires constant care. People with type 2 diabetes may also be likely to experience dry, itchy skin and poor wound healing. Some people with diabetes will have a skin problems at some time in their lives and for those not yet diagnosed with diabetes, a skin problem can be an indication of the disease. our purpose was to assess the capability and knowledge of students of Shiraz University of Medical Sciences about prevent from skin complications in diabetes type 2. Methods: In this descriptive cross-sectional study, knowledge of 360 students of Shiraz University of Medical Sciences was evaluated about different ways to avoid skin complications in diabetes type 2. Data were analyzed by spss19.(P<0.05) was considered significant. Results: 360 students of Shiraz University of Medical Sciences participated in this study. 45% of students agree with the effect of Moisturize skin daily, If Diabetics have sensitive skin, choose a fragrance-free, dye-free moisturizer that won’t irritate skin. 52% believe that Protect skin from sun can be so useful, Sun exposure is drying and aging. Use sunscreen with SPF 30 or higher whenever you’re outside. Wear gloves when doing yardwork to protect the skin on your hands. 62% of students strongly agree with Carefully clean any cuts and scrapes, If diabetics notice any sign of infection skin that’s red, swollen, or warm to the touch, or has a foul-smelling drainage or pus should consulting with a doctor immediately. Diabetics should be careful about any injury that takes longer than normal to heal and they should consulting with doctor about them too. 72% of students believe that diabetics should be diligent about daily foot care. Clean and moisturize feet each day and check each foot closely, top and bottom, for wounds even a tiny cut, blisters, or cracked skin. Conclusions: The risk of getting these diabetes complications can be lessened by controlling blood sugar. Skin complications can cause serious consequences. Taking care of skin is so important and using these tips are remarkable effective and help diabetics to look after their skin easier.Keywords: skin complications, diabetes type 2, Shiraz University of Medical Sciences, diabetics
Procedia PDF Downloads 355237 Understanding the Damage Evolution and the Risk of Failure of Pyrrhotite Containing Concrete Foundations
Authors: Marisa Chrysochoou, James Mahoney, Kay Wille
Abstract:
Pyrrhotite is an iron-sulfide mineral which releases sulfuric acid when exposed to water and oxygen. The presence of this mineral in concrete foundations across Connecticut and Massachusetts in the US is causing in some cases premature failure. This has resulted in a devastating crisis for all parties affected by this type of failure which can take up to 15-25 years before internal damage becomes visible on the surface. This study shares laboratory results aimed to investigate the fundamental mechanisms of pyrrhotite reaction and to further the understanding of its deterioration kinetics within concrete. This includes the following analyses: total sulfur, wavelength dispersive X-ray fluorescence, expansion, reaction rate combined with ion-chromatography, as well as damage evolution using electro-chemical acceleration. This information is coupled to a statistical analysis of over 150 analyzed concrete foundations. Those samples were obtained and process using a developed and validated sampling method that is minimally invasive to the foundation in use, provides representative samples of the concrete matrix across the entire foundation, and is time and cost-efficient. The processed samples were then analyzed using a developed modular testing method based on total sulfur and wavelength dispersive X-ray fluorescence analysis to quantify the amount of pyrrhotite. As part of the statistical analysis the results were grouped into the following three categories: no damage observed and no pyrrhotite detected, no damage observed and pyrrhotite detected and damaged observed and pyrrhotite detected. As expected, a strong correlation between amount of pyrrhotite, age of the concrete and damage is observed. Information from the laboratory investigation and from the statistical analysis of field samples will aid in forming a scientific basis to support the decision process towards sustainable financial and administrative solutions by state and local stakeholders.Keywords: concrete, pyrrhotite, risk of failure, statistical analysis
Procedia PDF Downloads 68236 Vanadium (V) Complexes of a Tripodal Ligand, Their Characterization and Biological Implications
Authors: Mannar R. Maurya, Bhawna Uprety, Fernando Avecilla, Pedro Adão, J. Costa Pessoa
Abstract:
The reaction of the tripodal tetradentate dibasic ligand 6,6'–(2–(pyridin–2–yl)ethylazanediyl)bis(methylene)bis(2,4–di–tert–butylphenol), H2L1 I, with [VIVO(acac)2] in CH3CN gives the VVO–complex, [VVO(acac)(L1)] 1. Crystallization of 1 in CH3CN at ~0 ºC, gives dark blue crystals of 1, while at room temperature it affords dark green crystals of [{VVO(L1)}2µ–O] 3. Upon prolonged treatment of 1 in MeOH [VVO(OMe)(MeOH)(L1)] 2 is obtained. All three complexes are analyzed by single–crystal X–ray diffraction, depicting distorted octahedral geometry around vanadium. In the reaction of H2L1 with VIVOSO4 partial hydrolysis of the tripodal ligand results in elimination of the pyridyl fragment of L1 and the formation of H[VVO2(L2)] 4, containing the ONO tridentate ligand 6,6'–azanediylbis(methylene)bis(2,4–di–tert–butylphenol), H2L2 II. Compound 4, which was not fully characterized, undergoes dimerization in acetone yielding the hydroxido–bridged [{VVO(L2)}2µ–(HO)2] 5, having distorted octahedral geometry around each vanadium. In contrast, from a solution of 4 in acetonitrile, the dinuclear compound [{VVO(L2)}2µ–O] 6 is obtained, with trigonal bipyramidal geometry around each vanadium. The methoxido complex 2 is successfully employed as a functional catechol–oxidase mimic in the oxidation of catechol to o–quinone under air. The process is confirmed to follow a Michaelis–Menten type kinetics with respect to catechol, the Vmax and KM values obtained being 7.66×10–6 M min -1 and 0.0557 M, respectively, and the turnover frequency is 0.0541 min–1. Complex 2 is also used as a catalyst precursor for the oxidative bromination of thymol in aqueous medium. The selectivity shows quite interesting trends, namely when not using excess of primary oxidizing agent, H2O2 the para mono–brominated product corresponds to ~93 % of the products and no dibromo derivative is formed.Keywords: oxidovanadium (V) complexes, tripodal ligand, crystal structure, catechol oxidase mimetic activity
Procedia PDF Downloads 341235 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors
Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić
Abstract:
Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism
Procedia PDF Downloads 102234 Regeneration Nature of Rumex Species Root Fragment as Affected by Desiccation
Authors: Khalid Alshallash
Abstract:
Small fragments of the roots of some Rumex species including R. obtusifolius and R. crispus have been found to regenerate readily, contributing to the severity of infestations by these very common, widespread and difficult to control perennial weeds of agricultural crops and grasslands. Their root fragments are usually created during routine agricultural practices. We found that fresh root fragments of both species containing 65-70 % of moisture, progressively lose their moisture content when desiccated under controlled growth room conditions matching summer weather of southeast England, with the greatest reduction occurring in the first 48 hours. Probability of shoot emergence and the time taken for emergence in glasshouse conditions were also reduced significantly by desiccation, with R. obtusifolius least affected up to 48-hour. However, the effects converged after 120 hours. In contrast, R. obtusifolius was significantly slower to emerge after up to 48 hours desiccation, again effects converging after longer periods, R. crispus entirely failed to emerge at 120 hours. The dry weight of emerged shoots was not significantly different between the species, until desiccated for 96 hours when R. obtusifolius was significantly reduced. At 120 hours, R. obtusifolius did not emerge. In outdoor trials, desiccation for 24 or 48 hours had less effect on emergence when planted at the soil surface or up to 10 cm of depth, compared to deeper plantings. In both species, emergence was significantly lower when desiccated fragments were planted at 15 or 20 cm. Time taken for emergence was not significantly different between the species until planted at 15 or 20 cm when R. obtusifolius was slower than R. crispus and reduced further by increasing desiccation. Similar variation in effects of increasing soil depth interacting with increasing desiccation was found in reductions in dry weight, the number of tillers and leaf area, with R obtusifolius generally but not exclusively better able to withstand more extreme trial conditions. Our findings suggest that infestations of these highly troublesome weeds may be partly controlled by appropriate agricultural practices, notably exposing cut fragments to drying environmental conditions followed by deep burial.Keywords: regeneration, root fragment, rumex crispus, rumex obtusifolius
Procedia PDF Downloads 98