Search results for: sodium nitrate supplementation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1561

Search results for: sodium nitrate supplementation

931 Flexible Ethylene-Propylene Copolymer Nanofibers Decorated with Ag Nanoparticles as Effective 3D Surface-Enhanced Raman Scattering Substrates

Authors: Yi Li, Rui Lu, Lianjun Wang

Abstract:

With the rapid development of chemical industry, the consumption of volatile organic compounds (VOCs) has increased extensively. In the process of VOCs production and application, plenty of them have been transferred to environment. As a result, it has led to pollution problems not only in soil and ground water but also to human beings. Thus, it is important to develop a sensitive and cost-effective analytical method for trace VOCs detection in environment. Surface-enhanced Raman Spectroscopy (SERS), as one of the most sensitive optical analytical technique with rapid response, pinpoint accuracy and noninvasive detection, has been widely used for ultratrace analysis. Based on the plasmon resonance on the nanoscale metallic surface, SERS technology can even detect single molecule due to abundant nanogaps (i.e. 'hot spots') on the nanosubstrate. In this work, a self-supported flexible silver nitrate (AgNO3)/ethylene-propylene copolymer (EPM) hybrid nanofibers was fabricated by electrospinning. After an in-situ chemical reduction using ice-cold sodium borohydride as reduction agent, numerous silver nanoparticles were formed on the nanofiber surface. By adjusting the reduction time and AgNO3 content, the morphology and dimension of silver nanoparticles could be controlled. According to the principles of solid-phase extraction, the hydrophobic substance is more likely to partition into the hydrophobic EPM membrane in an aqueous environment while water and other polar components are excluded from the analytes. By the enrichment of EPM fibers, the number of hydrophobic molecules located on the 'hot spots' generated from criss-crossed nanofibers is greatly increased, which further enhances SERS signal intensity. The as-prepared Ag/EPM hybrid nanofibers were first employed to detect common SERS probe molecule (p-aminothiophenol) with the detection limit down to 10-12 M, which demonstrated an excellent SERS performance. To further study the application of the fabricated substrate for monitoring hydrophobic substance in water, several typical VOCs, such as benzene, toluene and p-xylene, were selected as model compounds. The results showed that the characteristic peaks of these target analytes in the mixed aqueous solution could be distinguished even at a concentration of 10-6 M after multi-peaks gaussian fitting process, including C-H bending (850 cm-1), C-C ring stretching (1581 cm-1, 1600 cm-1) of benzene, C-H bending (844 cm-1 ,1151 cm-1), C-C ring stretching (1001 cm-1), CH3 bending vibration (1377 cm-1) of toluene, C-H bending (829 cm-1), C-C stretching (1614 cm-1) of p-xylene. The SERS substrate has remarkable advantages which combine the enrichment capacity from EPM and the Raman enhancement of Ag nanoparticles. Meanwhile, the huge specific surface area resulted from electrospinning is benificial to increase the number of adsoption sites and promotes 'hot spots' formation. In summary, this work provides powerful potential in rapid, on-site and accurate detection of trace VOCs using a portable Raman.

Keywords: electrospinning, ethylene-propylene copolymer, silver nanoparticles, SERS, VOCs

Procedia PDF Downloads 151
930 Removal of Nitrate and Phosphates from Waste Water Using Activated Bio-Carbon Produced from Agricultural Waste

Authors: Kgomotso Matobole, Natania De Wet, Tefo Mbambo, Hilary Rutto, Tumisang Seodigeng

Abstract:

Nitrogen and phosphorus are nutrients which are required in the ecosystem, however, at high levels, these nutrients contribute to the process of eutrophication in the receiving water bodies, which threatens aquatic organisms. Hence it is vital that they are removed before the water is discharged. This phenomenon increases the cost related to wastewater treatment. This raises the need for the development of processes that are cheaper. Activated biocarbon was used in batch and filtration system to remove nitrates and phosphates. The batch system has higher nutrients removal capabilities than the filtration system. For phosphate removal, 93 % removal is achieved at the adsorbent of 300 g while for nitrates, 84 % removal is achieved when 200 g of activated carbon is loaded.

Keywords: waste water treatment, phosphates, nitrates, activated carbon, agricultural waste

Procedia PDF Downloads 394
929 Fluid Prescribing Post Laparotomies

Authors: Gusa Hall, Barrie Keeler, Achal Khanna

Abstract:

Introduction: NICE guidelines have highlighted the consequences of IV fluid mismanagement. The main aim of this study was to audit fluid prescribing post laparotomies to identify if fluids were prescribed in accordance to NICE guidelines. Methodology: Retrospective database search of eight specific laparotomy procedures (colectomy right and left, Hartmann’s procedure, small bowel resection, perforated ulcer, abdominal perineal resection, anterior resection, pan proctocolectomy, subtotal colectomy) highlighted 29 laparotomies between April 2019 and May 2019. Two of 29 patients had secondary procedures during the same admission, n=27 (patients). Database case notes were reviewed for date of procedure, length of admission, fluid prescribed and amount, nasal gastric tube output, daily bloods results for electrolytes sodium and potassium and operational losses. Results: n=27 based on 27 identified patients between April 2019 – May 2019, 93% (25/27) received IV fluids, only 19% (5/27) received the correct IV fluids in accordance to NICE guidelines, 93% (25/27) who received IV fluids had the correct electrolytes levels (sodium & potassium), 100% (27/27) patients received blood tests (U&E’s) for correct electrolytes levels. 0% (0/27) no documentation on operational losses. IV fluids matched nasogastric tube output in 100% (3/3) of the number of patients that had a nasogastric tube in situ. Conclusion: A PubMed database literature review on barriers to safer IV prescribing highlighted educational interventions focused on prescriber knowledge rather than how to execute the prescribing task. This audit suggests IV fluids post laparotomies are not being prescribed consistently in accordance to NICE guidelines. Surgical management plans should be clearer on IV fluids and electrolytes requirements for the following 24 hours after the plan has been initiated. In addition, further teaching and training around IV prescribing is needed together with frequent surgical audits on IV fluid prescribing post-surgery to evaluate improvements.

Keywords: audit, IV Fluid prescribing, laparotomy, NICE guidelines

Procedia PDF Downloads 106
928 Electricity Production from Vermicompost Liquid Using Microbial Fuel Cell

Authors: Pratthana Ammaraphitak, Piyachon Ketsuwan, Rattapoom Prommana

Abstract:

Electricity production from vermicompost liquid was investigated in microbial fuel cells (MFCs). The aim of this study was to determine the performance of vermicompost liquid as a biocatalyst for electricity production by MFCs. Chemical and physical parameters of vermicompost liquid as total nitrogen, ammonia-nitrogen, nitrate, nitrite, total phosphorus, potassium, organic matter, C:N ratio, pH, and electrical conductivity in MFCs were studied. The performance of MFCs was operated in open circuit mode for 7 days. The maximum open circuit voltage (OCV) was 0.45 V. The maximum power density of 5.29 ± 0.75 W/m² corresponding to a current density of 0.024 2 ± 0.0017 A/m² was achieved by the 1000 Ω on day 2. Vermicompost liquid has efficiency to generate electricity from organic waste.

Keywords: vermicompost liquid, microbial fuel cell, nutrient, electricity production

Procedia PDF Downloads 162
927 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 373
926 Effects of Novel Protease Enzyme From Bacillus subtilis on Low Protein and Low Energy Guar Meal (Cyamopsis tetragonoloba) Meal Based Diets on Performance and Nutrients Digestibility in Broilers

Authors: Aqeel Ahmed Shad, Tanveer Ahmad, Muhammad Farooq Iqbal, Muhammad Javaid Asad

Abstract:

The supplemental effects of novel protease produced from Bacillus subtilis K-5 and beta-mannanase were evaluated on growth performance, carcass characteristics, nutrients digestibility, blood profile and intestinal morphometry of broilers fed guar meal (Cyamopsis tetragonoloba) based diets with reduced Crude Protein (CP), Essential Amino Acids (EAAs), and Metabolizable energy (ME) contents. One-day old Ross 308 broiler chicks (n=360) were randomly allotted to thirty six experimental units in a way that each of the nine dietary treatments received four replicates with ten birds per replicate. A control diet without guar meal (0GM) was formulated with standard nutrient specifications of Ross 308 for the starter and finisher phases. Two negative control diets, one with 5% (5GM) and second with 10% (10GM) guar meal, were formulated with reduction of 5% CP, 5% EAAs and 80 Kcal/kg ME. These three basal diets (no enzyme) were supplemented with novel protease enzyme (PROT) and commercial beta-mannanase (Beta-M) enzyme. The birds were reared up to 35d of age. The data on weekly body weight gain (BWG) and feed intake were recorded to compute feed:gain for the starter (0-21d) and finisher (22-35d) phases. At the end of 35d of experimental period, four birds per experimental unit were randomly selected for blood samples collection and later slaughtered for ileal digesta, intestinal tract and carcass trait sampling. The data on overall performance (1-35d) indicated improved (P<0.05) BWG and feed:gain in birds supplemented with PROT (1.41% and 1.67) and Beta-M (2.79% and 1.64) than non-supplemented groups. Improved (P<0.05) carcass yield, breast meat yield and thigh meat yield were noted with the supplementation of Beta-M. However, non-significant (P>0.05) effect on carcass traits was noted in broiler fed guar meal based PROT supplemented diets. Crude protein digestibility, nitrogen retention (Nret) and apparent digestibility coefficient for nitrogen (ADCN) were improved (P<0.05) only with PROT. The improvement in apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen (AMEn) was noted (P<0.05) with both supplemented enzymes. However, no effect (P>0.05) of enzyme addition was noted on blood glucose, total protein and cholesterol. Improved villus height of duodenum, jejunum and ileum was noted (P<0.05) with the addition of both enzymes. The EAAs digestibility was improved (P<0.05) only with PROT. In conclusion, beta-mannanase and protease supplementation better improved the overall bird performance in low nutrient profile guar meal based diets than non-supplemented diets.

Keywords: novel protease, guar meal, broilers, low protein diets, low metabolizable energy diets, nutrients digestibility

Procedia PDF Downloads 47
925 Medium Composition for the Laboratory Production of Enzyme Fructosyltransferase (FTase)

Authors: O. R. Raimi, A. Lateef

Abstract:

Inoculum developments of A. niger were used for inoculation of medium for submerged fermentation and solid state fermentation. The filtrate obtained were used as sources of the extra-cellular enzymes. The FTase activities and the course of pH in submerged fermentation ranged from 7.53-24.42µ/ml and 4.4-4.8 respectively. The maximum FTase activity was obtained at 48 hours fermentation. In solid state fermentation, FTase activities ranged from 2.41-27.77µ/ml. Using ripe plantain peel and kola nut pod respectively. Both substrates supported the growth of the fungus, producing profuse growth during fermentation. In the control experiment (using kolanut pod) that lack supplementation, appreciable FTase activity of 16.92µ/ml was obtained. The optimum temperature range was 600C. it was also active at broad pH range of 1-9 with optimum obtain at pH of 5.0. FTase was stable within the range of investigated pH showing more than 60% activities. FTase can be used in the production of fructooligosaccharide, a functional food.

Keywords: Aspergillus niger, solid state fermentation, kola nut pods, Fructosyltransferase (FTase)

Procedia PDF Downloads 438
924 Lignin Phenol Formaldehyde Resole Resin: Synthesis and Characteristics

Authors: Masoumeh Ghorbania, Falk Liebnerb, Hendrikus W.G. van Herwijnenc, Johannes Konnertha

Abstract:

Phenol formaldehyde (PF) resins are widely used as wood adhesives for variety of industrial products such as plywood, laminated veneer lumber and others. Lignin as a main constituent of wood has become well-known as a potential substitute for phenol in PF adhesives because of their structural similarity. During the last decades numerous research approaches have been carried out to substitute phenol with pulping-derived lignin, whereby the lower reactivity of resins synthesized with shares of lignin seem to be one of the major challenges. This work reports about a systematic screening of different types of lignin (plant origin and pulping process) for their suitability to replace phenol in phenolic resins. Lignin from different plant sources (softwood, hardwood and grass) were used, as these should differ significantly in their reactivity towards formaldehyde of their reactive phenolic core units. Additionally a possible influence of the pulping process was addressed by using the different types of lignin from soda, kraft, and organosolv process and various lignosulfonates (sodium, ammonium, calcium, magnesium). To determine the influence of lignin on the adhesive performance beside others the rate of viscosity development, bond strength development of varying hot pressing time and other thermal properties were investigated. To evaluate the performance of the cured end product, a few selected properties were studied at the example of solid wood-adhesive bond joints, compact panels and plywood. As main results it was found that lignin significantly accelerates the viscosity development in adhesive synthesis. Bonding strength development during curing of adhesives decelerated for all lignin types, while this trend was least for pine kraft lignin and spruce sodium lignosulfonate. However, the overall performance of the products prepared with the latter adhesives was able to fulfill main standard requirements, even after exposing the products to harsh environmental conditions. Thus, a potential application can be considered for processes where reactivity is less critical but adhesive cost and product performance is essential.

Keywords: phenol formaldehyde resin, lignin phenol formaldehyde resin, ABES, DSC

Procedia PDF Downloads 220
923 Phase Equilibria in the Ln-Sr-Co-O Systems

Authors: Anastasiia Maklakova

Abstract:

The perovskite type oxides formed in the Ln-Me-Me/-O systems (where Ln – rare-earth, Me – alkaline earth metal, Me/ - 3-d metal) have potential applications as gas sensors, catalysts or cathode materials for IT-SOFCs due to the high values of mixed electronic -ionic conductivity and high oxygen diffusivity. Complex oxides in the Sr-(Pr,Gd)-Co-O systems were prepared via the glycerol-nitrate technique The phase composition was determined using a Shimadzu XRD-7000 diffractometer at room temperature in air. Phase identification was performed using the ICDD database. The structure was refined by the full-profile Rietveld method using Fullprof 2008 software. Gradual substitution of strontium by Pr or Gd leads to the decrease of unit cell parameters and unit cell volume that can be explained by the size factor. An introduction of Pr or Gd into the strontium cobaltite increases the oxygen content in samples.

Keywords: phase equilibria, crystal structure, oxygen nonstoichiometry, solid oxide fuel cell

Procedia PDF Downloads 103
922 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique

Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti

Abstract:

Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.

Keywords: cordierite, infiltration technique, porous ceramics, sol-gel

Procedia PDF Downloads 263
921 Development of Composition and Technology of Vincristine Nanoparticles Using High-Molecular Carbohydrates of Plant Origin

Authors: L. Ebralidze, A. Tsertsvadze, D. Berashvili, A. Bakuridze

Abstract:

Current cancer therapy strategies are based on surgery, radiotherapy and chemotherapy. The problems associated with chemotherapy are one of the biggest challenges for clinical medicine. These include: low specificity, broad spectrum of side effects, toxicity and development of cellular resistance. Therefore, anti-cance drugs need to be develop urgently. Particularly, in order to increase efficiency of anti-cancer drugs and reduce their side effects, scientists work on formulation of nano-drugs. The objective of this study was to develop composition and technology of vincristine nanoparticles using high-molecular carbohydrates of plant origin. Plant polysacharides, particularly, soy bean seed polysaccharides, flaxseed polysaccharides, citrus pectin, gum arabic, sodium alginate were used as objects. Based on biopharmaceutical research, vincristine containing nanoparticle formulations were prepared. High-energy emulsification and solvent evaporation methods were used for preparation of nanosystems. Polysorbat 80, polysorbat 60, sodium dodecyl sulfate, glycerol, polyvinyl alcohol were used in formulation as emulsifying agent and stabilizer of the system. The ratio of API and polysacharides, also the type of the stabilizing and emulsifying agents are very effective on the particle size of the final product. The influence of preparation technology, type and concentration of stabilizing agents on the properties of nanoparticles were evaluated. For the next stage of research, nanosystems were characterized. Physiochemical characterization of nanoparticles: their size, shape, distribution was performed using Atomic force microscope and Scanning electron microscope. The present study explored the possibility of production of NPs using plant polysaccharides. Optimal ratio of active pharmaceutical ingredient and plant polysacharids, the best stabilizer and emulsifying agent was determined. The average range of nanoparticles size and shape was visualized by SEM.

Keywords: nanoparticles, target delivery, natural high molecule carbohydrates, surfactants

Procedia PDF Downloads 253
920 Inorganic Anion Removal from Water Using Natural Adsorbents

Authors: A. Ortuzar, I. Escondrillas, F. Mijangos

Abstract:

There is a need for new systems that can be attached to drinking water treatment plants and have the required treatment capacity as well as the selectivity regarding components derived from anthropogenic activities. In a context of high volumes of water and low concentration of contaminants, adsorption/interchange processes are appealing since they meet the required features. Iron oxides such as siderite and molysite, which are respectively based on FeCO3 and FeCl3, can be found in nature. In this work, their observed performance, raw or roasted at different temperatures, as adsorbents of some inorganic anions is discussed. Roasted 1:1 FeCO3: FeCl3 mixture was very selective for arsenic and allowed a 100% removal of As from a 10 mg L-1 As solution. Besides, the 1:1 FeCO3 and FeCl3 mixture roasted at 500 ºC showed good selectivity for, in order of preference, arsenate, bromate, phosphate, fluoride and nitrate anions with distribution coefficients of, respectively, 4200, 2800, 2500 0.4 and 0.03 L g-1.

Keywords: drinking water, natural adsorbent materials, removal, selectivity

Procedia PDF Downloads 176
919 The Effect of Clover Honey Supplementation on the Anthropometric Measurements and Lipid Profile of Malnourished Infants and Children

Authors: Bassma A. Abdelhaleem, Mamdouh A. Abdulrhman, Nagwa I. Mohamed

Abstract:

Malnutrition in children is an increasing problem worldwide which may result in both short and long-term irreversible negative health outcomes. Severe Acute Malnutrition (SAM) affects more than 18 million children each year, mostly living in low-income settings. SAM contributes to 45% of all deaths in children less than five years of age. Honey is a natural sweetener, containing mainly monosaccharides (up to 80%), disaccharides (3–5%), water (17–20%), and a wide range of minor constituents such as vitamins, minerals, proteins, amino acids, enzymes, and phytochemicals, mainly phenolic acids, and flavonoids. Honey has been used in many cultures around the world due to its known nutritional and medicinal benefits including the treatment of hypercholesterolemia. Despite its use since ancient times yet little is known about its potential benefits for malnourished children. Honey has the potential to be an affordable solution for malnourished low-income children as it is nutrient-dense and calorie dense food, easily absorbed, highly palatable, enhances appetite, and boosts immunity. This study assessed the effect of clover honey supplementation on the anthropometric measurements and lipid profile of malnourished infants and children. A prospective interventional clinical trial was conducted between November 2019 to November 2020, on 40 malnourished infants and children divided into two groups: Group A (20 children; 11 males and 9 females) received honey in a dose of 1.75ml/kg/dose, twice weekly for 12 weeks and Group B (20 children; 6 males and 14 females) received placebo. Written informed consent was obtained for parents/guardians. Patients were recruited from the Pediatric Nutrition Clinic at Ain Shams University. Anthropometric measurements (weight, height, body mass index, head circumference, and mid-arm circumference) and fasting serum cholesterol levels were measured at baseline and after 3 months. The 3-month honey consumption had a statistically highly significant effect on increasing weight, height, and body mass index and lowering fasting serum cholesterol levels in primary malnourished infants and children. Weight, height, body mass index, and fasting serum cholesterol level before honey consumption were (9.49 ± 2.03, 81.45 ± 8.31, 14.24 ± 2.15, 178.00 ± 20.91) and after 3 months of honey consumption were (10.91 ± 2.11, 84.80 ± 8.23, 15.07 ± 2.05, 162.45 ± 19.73) respectively with P-value < 0.01. Our results showed a significant desirable effect of honey consumption on changes in nutritional status based on weight, height, and body mass index, and has a favourable effect on lowering fasting serum cholesterol levels. These results propose the use of honey as an affordable solution to improve malnutrition, particularly in low-income countries. However, further research needs to weigh benefits against potential harms including the risk of botulinum toxin that is historically associated with honey consumption in early childhood.

Keywords: clinical trial, dyslipidemia, honey, malnutrition

Procedia PDF Downloads 85
918 Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement

Authors: Amin Ajabi, Chinchu Cherian, Sumi Siddiqua

Abstract:

Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions.

Keywords: sustainability, rammed earth, stabilization, pulp mill fly ash, geopolymer, alkaline activation, strength, durability

Procedia PDF Downloads 86
917 Improving Enhanced Oil Recovery by Using Alkaline-Surfactant-Polymer Injection and Nanotechnology

Authors: Amir Gerayeli, Babak Moradi

Abstract:

The continuously declining oil reservoirs and reservoirs aging have created a huge demand for utilization of Enhanced Oil Recovery (EOR) methods recently. Primary and secondary oil recovery methods have various limitations and are not practical for all reservoirs. Therefore, it is necessary to use chemical methods to improve oil recovery efficiency by reducing oil and water surface tension, increasing sweeping efficiency, and reducing displacer phase viscosity. One of the well-known methods of oil recovery is Alkaline-Surfactant-Polymer (ASP) flooding that shown to have significant impact on enhancing oil recovery. As some of the biggest oil reservoirs including those of Iran’s are fractional reservoirs with substantial amount of trapped oil in their fractures, the use of Alkaline-Surfactant-Polymer (ASP) flooding method is increasingly growing, the method in which the impact of several parameters including type and concentration of the Alkaline, Surfactant, and polymer are particularly important. This study investigated the use of Nano particles to improve Enhanced Oil Recovery (EOR). The study methodology included performing several laboratory tests on drill cores extracted from Karanj Oil field Asmary Formation in Khuzestan, Iran. In the experiments performed, Sodium dodecyl benzenesulfonate (SDBS) and 1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) were used as surfactant, hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer, Sodium hydroxide (NaOH) as alkaline, and Silicon dioxide (SiO2) and Magnesium oxide (MgO) were used as Nano particles. The experiment findings suggest that water viscosity increased from 1 centipoise to 5 centipoise when hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer. The surface tension between oil and water was initially measured as 25.808 (mN/m). The optimum surfactant concentration was found to be 500 p, at which the oil and water tension surface was measured to be 2.90 (mN/m) when [C12mim] [Cl] was used, and 3.28 (mN/m) when SDBS was used. The Nano particles concentration ranged from 100 ppm to 1500 ppm in this study. The optimum Nano particle concentration was found to be 1000 ppm for MgO and 500 ppm for SiO2.

Keywords: alkaline-surfactant-polymer, ionic liquids, relative permeability, reduced surface tension, tertiary enhanced oil recovery, wettability change

Procedia PDF Downloads 139
916 In vitro Fermentation Characteristics of Palm Oil Byproducts Which is Supplemented with Growth Factor Rumen Microbes

Authors: Mardiati Zain, Jurnida Rahman, Khasrad, Erpomen

Abstract:

The aim of this experiment was to study the use of palm oil by products (oil palm fronds (OPF), palm oil sludge (POS) and palm kernel cake (PKC)), that supplemented with growth factor rumen microbes (Sapindus rarak and Sacharomyces cerevisiae) on digestibility and fermentation in vitro. Oil Palm Fronds was previously treated with 3% urea. The treatments consist of 50% OPF+ 30% POS+ 20% PKC as a control diet (A), B = A + 4% Sapindus rarak, C = A + 0.5 % Sacharomyces cerevisiae and D = A + 4% Sapindus rarak + 0.5% Sacharomyces cerevisiae. Digestibility of DM, OM, ADF, NDF, cellulose and rumen parameters (NH3 and VFA) of all treatments were significantly different (P < 0.05). Fermentation and digestibility treatment A were significantly lower than treatments B, C, and D. The result indicated that supplementation Sapindus rarak and S. cerevisiae were able to improve fermentability and digestibility of palm oil by product.

Keywords: palm oil by product, Sapindus rarak, Sacharomyces rerevisiae, fermentability, OPF ammoniated

Procedia PDF Downloads 670
915 Capability of Marine Macroalgae Chaetomorpha linum for Wastewater Phytoremediation and Biofuel Recovery

Authors: Zhipeng Chen, Lingfeng Wang, Shuang Qiu, Shijian Ge

Abstract:

Macroalgae are larger in size compared with microalgae; hence, they imposed lower separation and drying costs. To explore the potential for enhancing cultivation conditions in macroalgae Chaetomorpha linum (C. linum)-based bioreactor for nutrient recovery from municipal wastewaters and examine the biochemical composition of the macroalgae for the potential downstream production of biofuels, screening experiments were performed. This study suggested that C. linum grew well on primary (PW), secondary (SW), and centrate wastewater (CW). A step feeding approach was shown to significantly enhance biomass productivity when grown on 10% CW; meanwhile, nitrogen and phosphorus removal efficiencies increased to 86.8 ± 1.1% and 92.6 ± 0.2%, respectively. The CO₂-supplemented SW cultures were 1.20 times more productive than the corresponding controls without CO₂ supplementation. These findings demonstrate that C. linum could represent a promising and efficient wastewater treatment alternative which could also provide a feedstock for downstream processing to biofuels.

Keywords: biofuel production, macroalgae, nutrient removal, wastewater

Procedia PDF Downloads 149
914 Synthesis and Characterization of Chitosan Microparticles for Scaffold Structure and Bioprinting

Authors: J. E. Mendes, T. T. de Barros, O. B. G. de Assis, J. D. C. Pessoa

Abstract:

Chitosan, a natural polysaccharide of β-1,4-linked glucosamine residues, is a biopolymer obtained primarily from the exoskeletons of crustaceans. Interest in polymeric materials increases year by year. Chitosan is one of the most plentiful biomaterials, with a wide range of pharmaceutical, biomedical, industrial and agricultural applications. Chitosan nanoparticles were synthesized via the ionotropic gelation of chitosan with sodium tripolyphosphate (TPP). Two concentrations of chitosan microparticles (0.1 and 0.2%) were synthesized. In this study, it was possible to synthesize and characterize microparticles of chitosan biomaterial and this will be used for future applications in cell anchorage for 3D bioprinting.

Keywords: chitosan microparticles, biomaterial, scaffold, bioprinting

Procedia PDF Downloads 305
913 Rapid Green Synthesis and Characterization of Silver Nanoparticles Using Eclipta prostrata Leaf Extract

Authors: Siva Prasad Peddi

Abstract:

Silver nanoparticles were successfully synthesized from silver nitrate through a rapid green synthesis method using Eclipta prostrata leaf extract as a reducing cum stabilizing agent. The experimental procedure was readily conducted at room temperature and pressure, and could be easily scaled up. The silver nanoparticles thus obtained were characterized using UV-Visible Spectroscopy (UV-VIS) which yielded an absorption peak at 416 nm. The biomolecules responsible for capping of the bio-reduced silver nanoparticles synthesized using plant extract were successfully identified through FTIR analysis. It was evinced through Scanning Electron Microscope (SEM), and X-ray diffraction (XRD) analysis that the silver nanoparticles were crystalline in nature and spherical in shape. The average size of the particles obtained using Scherrer’s formula was 27.4 nm. The adopted technique for silver nanoparticle synthesis is suitable for large-scale production.

Keywords: silver nanoparticles, green synthesis, characterization, Eclipta prostrata

Procedia PDF Downloads 453
912 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior

Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami

Abstract:

The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.

Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization

Procedia PDF Downloads 284
911 Co-Smoldered Digestate Ash as Additive for Anaerobic Digestion of Berry Fruit Waste: Stability and Enhanced Production Rate

Authors: Arinze Ezieke, Antonio Serrano, William Clarke, Denys Villa-Gomez

Abstract:

Berry cultivation results in discharge of high organic strength putrescible solid waste which potentially contributes to environmental degradation, making it imperative to assess options for its complete management. Anaerobic digestion (AD) could be an ideal option when the target is energy generation; however, due to berry fruit characteristics high carbohydrate composition, the technology could be limited by its high alkalinity requirement which suggests dosing of additives such as buffers and trace elements supplement. Overcoming this limitation in an economically viable way could entail replacement of synthetic additives with recycled by-product waste. Consequently, ash from co-smouldering of high COD characteristic AD digestate and coco-coir could be a promising material to be used to enhance the AD of berry fruit waste, given its characteristic high pH, alkalinity and metal concentrations which is typical of synthetic additives. Therefore, the aim of the research was to evaluate the stability and process performance from the AD of BFW when ash from co-smoldered digestate and coir are supplemented as alkalinity and trace elements (TEs) source. Series of batch experiments were performed to ascertain the necessity for alkalinity addition and to see whether the alkalinity and metals in the co-smouldered digestate ash can provide the necessary buffer and TEs for AD of berry fruit waste. Triplicate assays were performed in batch systems following I/S of 2 (in VS), using serum bottles (160 mL) sealed and placed in a heated room (35±0.5 °C), after creating anaerobic conditions. Control experiment contained inoculum and substrates only, and inoculum, substrate and NaHCO3 for optimal total alkalinity concentration and TEs assays, respectively. Total alkalinity concentration refers to alkalinity of inoculum and the additives. The alkalinity and TE potential of the ash were evaluated by supplementing ash (22.574 g/kg) of equivalent total alkalinity concentration to that of the pre-determined optimal from NaHCO3, and by dosing ash (0.012 – 7.574 g/kg) of varying concentrations of specific essential TEs (Co, Fe, Ni, Se), respectively. The result showed a stable process at all examined conditions. Supplementation of 745 mg/L CaCO3 NaHCO3 resulted to an optimum TAC of 2000 mg/L CaCO3. Equivalent ash supplementation of 22.574 g/kg allowed the achievement of this pre-determined optimum total alkalinity concentration, resulting to a stable process with a 92% increase in the methane production rate (323 versus 168 mL CH4/ (gVS.d)), but a 36% reduction in the cumulative methane production (103 versus 161 mL CH4/gVS). Addition of ashes at incremental dosage as TEs source resulted to a reduction in the Cumulative methane production, with the highest dosage of 7.574 g/kg having the highest effect of -23.5%; however, the seemingly immediate bioavailability of TE at this high dosage allowed for a +15% increase in the methane production rate. With an increased methane production rate, the results demonstrated that the ash at high dosages could be an effective supplementary material for either a buffered or none buffered berry fruit waste AD system.

Keywords: anaerobic digestion, alkalinity, co-smoldered digestate ash, trace elements

Procedia PDF Downloads 112
910 SEM and FTIR Study of Adsorption Characteristics Using Xanthate (KIBX) Synthesized Collectors on Sphalerite

Authors: Zohir Nedjar, Djamel Barkat

Abstract:

Thiols such as alkyl xanthates are commonly used as collectors in the froth flotation of sulfide minerals. Under the concen-tration, pH and Eh conditions relevant to flotation, the thermodynamically favoured reaction between a thiol and a sulfide mineral surface is charge transfechemisorption in which the collector becomes bonded to metal atoms in the outermost layer of the sulfide lattice. The adsorption of potassium isobutyl xanthate (KIBX 3.10-3M) on sphalerite has been also studied using electrochemical potential, FTIR technique and SEM. Non activated minerals and minerals activated with copper sulfate (10-4 M) and copper nitrate (10-4 M) have been investigated at pH = 7.5. Surface species have been identified by FTIR and correlated with SEM. After copper sulfate activation, copper xanthate exists on all of the minerals studied. Neutral pH is most favorable for potassium isobutyl xanthate adsorption on sphalerite.

Keywords: flotation, adsorption, xanthate KIBX, sphalerite

Procedia PDF Downloads 292
909 Development of Adsorbents for Removal of Hydrogen Sulfide and Ammonia Using Pyrolytic Carbon Black form Waste Tires

Authors: Yang Gon Seo, Chang-Joon Kim, Dae Hyeok Kim

Abstract:

It is estimated that 1.5 billion tires are produced worldwide each year which will eventually end up as waste tires representing a major potential waste and environmental problem. Pyrolysis has been great interest in alternative treatment processes for waste tires to produce valuable oil, gas and solid products. The oil and gas products may be used directly as a fuel or a chemical feedstock. The solid produced from the pyrolysis of tires ranges typically from 30 to 45 wt% and have high carbon contents of up to 90 wt%. However, most notably the solid have high sulfur contents from 2 to 3 wt% and ash contents from 8 to 15 wt% related to the additive metals. Upgrading tire pyrolysis products to high-value products has concentrated on solid upgrading to higher quality carbon black and to activated carbon. Hydrogen sulfide and ammonia are one of the common malodorous compounds that can be found in emissions from many sewages treatment plants and industrial plants. Therefore, removing these harmful gasses from emissions is of significance in both life and industry because they can cause health problems to human and detrimental effects on the catalysts. In this work, pyrolytic carbon black from waste tires was used to develop adsorbent with good adsorption capacity for removal of hydrogen and ammonia. Pyrolytic carbon blacks were prepared by pyrolysis of waste tire chips ranged from 5 to 20 mm under the nitrogen atmosphere at 600℃ for 1 hour. Pellet-type adsorbents were prepared by a mixture of carbon black, metal oxide and sodium hydroxide or hydrochloric acid, and their adsorption capacities were estimated by using the breakthrough curve of a continuous fixed bed adsorption column at ambient condition. The adsorbent was manufactured with a mixture of carbon black, iron oxide(III), and sodium hydroxide showed the maximum working capacity of hydrogen sulfide. For ammonia, maximum working capacity was obtained by the adsorbent manufactured with a mixture of carbon black, copper oxide(II), and hydrochloric acid.

Keywords: adsorbent, ammonia, pyrolytic carbon black, hydrogen sulfide, metal oxide

Procedia PDF Downloads 244
908 Discriminating Between Energy Drinks and Sports Drinks Based on Their Chemical Properties Using Chemometric Methods

Authors: Robert Cazar, Nathaly Maza

Abstract:

Energy drinks and sports drinks are quite popular among young adults and teenagers worldwide. Some concerns regarding their health effects – particularly those of the energy drinks - have been raised based on scientific findings. Differentiating between these two types of drinks by means of their chemical properties seems to be an instructive task. Chemometrics provides the most appropriate strategy to do so. In this study, a discrimination analysis of the energy and sports drinks has been carried out applying chemometric methods. A set of eleven samples of available commercial brands of drinks – seven energy drinks and four sports drinks – were collected. Each sample was characterized by eight chemical variables (carbohydrates, energy, sugar, sodium, pH, degrees Brix, density, and citric acid). The data set was standardized and examined by exploratory chemometric techniques such as clustering and principal component analysis. As a preliminary step, a variable selection was carried out by inspecting the variable correlation matrix. It was detected that some variables are redundant, so they can be safely removed, leaving only five variables that are sufficient for this analysis. They are sugar, sodium, pH, density, and citric acid. Then, a hierarchical clustering `employing the average – linkage criterion and using the Euclidian distance metrics was performed. It perfectly separates the two types of drinks since the resultant dendogram, cut at the 25% similarity level, assorts the samples in two well defined groups, one of them containing the energy drinks and the other one the sports drinks. Further assurance of the complete discrimination is provided by the principal component analysis. The projection of the data set on the first two principal components – which retain the 71% of the data information – permits to visualize the distribution of the samples in the two groups identified in the clustering stage. Since the first principal component is the discriminating one, the inspection of its loadings consents to characterize such groups. The energy drinks group possesses medium to high values of density, citric acid, and sugar. The sports drinks group, on the other hand, exhibits low values of those variables. In conclusion, the application of chemometric methods on a data set that features some chemical properties of a number of energy and sports drinks provides an accurate, dependable way to discriminate between these two types of beverages.

Keywords: chemometrics, clustering, energy drinks, principal component analysis, sports drinks

Procedia PDF Downloads 91
907 Treatment of Tannery Effluents by the Process of Coagulation

Authors: Gentiana Shegani

Abstract:

Coagulation is a process that sanitizes leather effluents. It aims to reduce pollutants such as Chemical Oxygen Demand (COD), chloride, sulphate, chromium, suspended solids, and other dissolved solids. The current study aimed to evaluate coagulation efficiency of tannery wastewater by analysing the change in organic matter, odor, colour, ammonium ions, nutrients, chloride, H2S, sulphate, suspended solids, total dissolved solids, faecal pollution, and chromium hexavalent before and after treatment. Effluent samples were treated with coagulants Ca(OH)2 and FeSO4 .7H2O. The best advantages of this treatment included the removal of: COD (81.60%); ammonia ions (98.34%); nitrate ions (92%); chromium hexavalent (75.00%); phosphate (70.00%); chloride (69.20%); and H₂S (50%). Results also indicated a high level of efficiency in the reduction of fecal pollution indicators. Unfortunately, only a modest reduction of sulphate (19.00%) and TSS (13.00%) and an increase in TDS (15.60%) was observed.

Keywords: coagulation, effluent, tannery, treatment

Procedia PDF Downloads 328
906 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels

Authors: A. Durgadevi, S. Pushpavanam

Abstract:

For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.

Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number

Procedia PDF Downloads 159
905 Compliance Of Dialysis patients With Nutrition Guidelines: Insights From A Questionnaire

Authors: Zeiler M., Stadler D., Schmaderer C.

Abstract:

Over the years of dialysis treatment, most patients experience significant weight loss. The primary emphasis in earlier research was the underlying mechanism of protein energy wasting and the subsequent malnutrition inflammation syndrome. In the interest to provide an effective and rapid solution for the patients, the aim of this study is identifying individual influences of their assumed reduced dietary intake, such as nausea, appetite loss and taste changes, and to determine whether the patients adhere to their nutrition guidelines. A prospective, controlled study with 38 end-stage renal disease patients was performed using a questionnaire to reflect their diet within the last 12 months. Thereby, the daily intake for the most important macro-and micronutrients was calculated to be compared with the individual KDQOI-guideline value, as well as controls matched in age and gender. The majority of the study population did not report symptoms commonly associated with dialysis, such as nausea or inappetence, and denied any change in dietary behavior since receiving renal replacement therapy. The patients’ daily intake of energy (3080kcal ± 1266) and protein (89,9g [53,4-142,0]) did not differ significantly from the controls (energy intake: 3233kcal ± 1046, p=0,597; protein intake: 103,7g [90,1-125,5], p=0,120). The average difference to the individual calculated KDQOI-guideline was +176,0kcal ± 1156 (p=0,357) for energy intake and -1,75g ± 45,9 (p=0,491) for protein intake. However, there was an observed imbalance in the distribution of macronutrients, with a preference for fats over proteins. The patients’ daily intake of sodium (5,4g [ 2,95-10,1]) was higher than in the controls (4,1g [2,04-5,99], p= 0,058) whereas both values for potassium (3,7g ± 1,84) and phosphorous (1,79g ± 0,91) went significantly below the controls’ values (potassium intake: 4,89g ± 1,74, p=0,014; phosphorous intake: 2,04g ± 0,64, p=0,038). Thus, the values exceeded the calculated KDQOI-recommendation by + 3,3g [0,63-7,90] (p<0,001) for sodium, +1,49g ± 1,84 (p<0,001) for potassium and +0,89g ± 0,91 (p<0,001) for phosphorous. Contrary to the assumption, the patients did not under-eat. Nevertheless, their diets did not align with the recommended values. These findings highlight the need for intervention and education among patients and that regular dietary monitoring could prevent unhealthy nutrition habits. The elaboration of individual references instead of standardized guidelines could increase the compliance to the advised diet so that interdisciplinary comorbidities do not develop or worsen.

Keywords: compliance, dialysis, end-stage renal disease, KDQOI, malnutrition, nutrition guidelines, questionnaire, salt intake

Procedia PDF Downloads 56
904 Preparation and Characterization of BaMnO₃ Application to the Photocatalytic Oxidation of Paracetamol under Solar Light

Authors: Dahmane Mohamed, Tab Asma, Trari Mohamed

Abstract:

BaMnO₃ nanoparticles were synthesized by a nitrate route. Its structure and physical properties were characterized by means of X-ray powder diffraction, radio crystallographic analysis, ultraviolet-visible absorption spectroscopy in diffuse reflectance mode, infrared spectroscopy, and electrochemical measurements. The optical study showed that barium manganese oxide presents a direct transition with band energy 2.13 eV. The electrochemical study allowed us to identify the redox peaks and the corrosion parameters. Capacitance measurement clearly showed n-type conductivity. The photodegradation of paracetamol by BaMnO₃ was followed by UV-visible spectrophotometry; the results were then confirmed by HPLC. BaMnO₃ has shown its photocatalytic efficiency in the photodegradation of 10 mg/L paracetamol under solar irradiation, with a yield of ≈ 88%. The kinetic study has shown that paracetamol degrades with first-order kinetics.

Keywords: BaMnO₃, photodegradation, paracetamol, electrochemical measurements, solar light

Procedia PDF Downloads 81
903 Screening of Nickel-Tolerant Genotype of Mung Bean (Vigna radiata) Based on Photosynthesis and Antioxidant System

Authors: Mohammad Yusuf, Qazi Fariduddin

Abstract:

The main aim of this study was to explore the different cultivars of Vigna radiata on basis of photosynthesis, antioxidants and proline to assess Ni-sensitive and Ni-tolerant cultivar. Seeds of five different cultivars were sown in soil amended with different levels of Ni (0, 50, 100, or 150 mg kg 1). At 30 d stage, plants were harvested to assess the various parameters. The Ni treatment diminished growth, leaf water potential, chlorophyll content and net photosynthesis along with nitrate reductase and carbonic anhydrase activities in the concentration dependent manner whereas, it enhanced proline content and various antioxidant enzymes. The varieties T-44 found least affected, whereas PDM-139 experienced maximum damage at 150 mg kg-1 of Ni. Moreover, T-44 possessed maximum activity of antioxidant enzymes and proline content at all the levels of metal whereas PDM-139 possessed minimum values. Therefore, T-44 and PDM-139 were established as the most resistant and sensitive varieties, respectively.

Keywords: Vigna radiata, antioxidants, nickel, photosynthesis, proline

Procedia PDF Downloads 195
902 Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)

Authors: El H. Bouziani, H. A. Reguieg Yssaad

Abstract:

The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.

Keywords: broad bean, lead, stress, physiological parameters, phytotoxicity

Procedia PDF Downloads 291