Search results for: toxic gases
1190 Dependence of Ionomer Loading on the Hydrogen Generation Rate of a Proton Exchange Membrane Electrolyzer
Authors: Yingjeng James Li, Chih Chi Hsu, Chiao-Chih Hu
Abstract:
Membrane electrode assemblies MEAs for proton exchange membrane PEM water electrolyzers were prepared by employing 175um perfluorosulfonic acid PFSA membranes as the PEM, onto which iridium oxide catalyst was coated on one side as the anode and platinum catalyst was coated on the other side as the cathode. The cathode catalyst ink was prepared so that the weight ratio of the catalyst powder to ionomer was 75:25, 70:30, 65:35, 60:40, and 55:45, respectively. Whereas, the ratio of catalyst powder to ionomer of the anode catalyst ink keeps constant at 50:50. All the MEAs have a catalyst coated area of 5cm*5cm. The test cell employs a platinum plated titanium grid as anode gas diffusion media; whereas, carbon paper was employed as the cathode gas diffusion media. The measurements of the MEA gases production rate were carried out by holding the cell voltage ranging from 1.6 to 2.8 volts at room temperature. It was found that the MEA with cathode catalyst to ionomer ratio of 65:35 gives the largest hydrogen production rate which is 2.8mL/cm2*min.Keywords: electrolyzer, membrane electrode assembly, proton exchange membrane, ionomer, hydrogen
Procedia PDF Downloads 2551189 Epidemiological, Clinical, Diagnostic Indicators and Treatment Efficiency of Patients with Immune Thrombocytopenic Purpura Diagnosed in Albania
Authors: Sara Grazhdani, Alma Cili, Arben Ivanaj
Abstract:
Immune Thrombocytopenic Purpura is an autoimmune disease characterized by the destruction of platelets by immune mediators, their deficient production in the red bone marrow and increased splenic sequestration, leading to the appearance of thrombocytopenia and increased risk of hemorrhage. Treatment is indicated in patients with low platelet counts (<30 x 10 9 /L) who present clinically with hemorrhagic events or are at increased risk for hemorrhage. The goal of the treatment remains (I) prevention of hemorrhagic events and deaths resulting from them, (II) reaching an adequate level of the number of platelets, (III) treatment of patients with as few toxic effects as possible. Corticosteroid therapy remains the first choice in the treatment of patients with Primary Immune Thrombocytopenic Purpura. Rituximab (Mabthera) remains the first choice in the second line in the treatment of patients with Immune Thrombocytopenic Purpura, refractory to the use of cortisones.Keywords: ITP, rituximab, prednisolone, relapse
Procedia PDF Downloads 1131188 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products
Authors: Su-Hyun Cho, Chang-U Chae
Abstract:
Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future.Keywords: CO₂ emissions, CO₂ reduction, ready-mixed concrete, environmental impact assessment
Procedia PDF Downloads 4791187 Examinations of Sustainable Protection Possibilities against Granary Weevil (Sitophilus granarius L.) on Stored Products
Authors: F. Pal-Fam, R. Hoffmann, S. Keszthelyi
Abstract:
Granary weevil, Sitophilus granarius (L.) (Col.: Curculionidae) is a typical cosmopolitan pest. It can cause significant damage to stored grains, and can drastically decrease yields. Damaged grain has reduced nutritional and market value, weaker germination, and reduced weight. The commonly used protectants against stored-product pests in Europe are residual insecticides, applied directly to the product. Unfortunately, these pesticides can be toxic to mammals, the residues can accumulate in the treated products, and many pest species could become resistant to the protectants. During recent years, alternative solutions of grain protection have received increased attention. These solutions are considered as the most promising alternatives to residual insecticides. The aims of our comparative study were to obtain information about the efficacies of the 1. diatomaceous earth, 2. sterile insect technology and 3. herbal oils against the S. granarius on grain (foremost maize), and to evaluate the influence of the dose rate on weevil mortality and progeny. The main results of our laboratory experiments are the followings: 1. Diatomaceous earth was especially efficacious against S. granarius, but its insecticidal properties depend on exposure time and applied dose. The efficacy on barley was better than on maize. Mortality value of the highest dose was 85% on the 21st day in the case of barley. It can be ascertained that complete elimination of progeny was evidenced on both gain types. To summarize, a satisfactory efficacy level was obtained only on barley at a rate of 4g/kg. Alteration of efficacy between grain types can be explained with differences in grain surface. 2. The mortality consequences of Roentgen irradiation on the S. granarius was highly influenced by the exposure time, and the dose applied. At doses of 50 and 70Gy, the efficacy accepted in plant protection (mortality: 95%) was recorded only on the 21st day. During the application of 100 and 200Gy doses, high mortality values (83.5% and 97.5%) were observed on the 14th day. Our results confirmed the complete sterilizing effect of the doses of 70Gy and above. The autocide effect of 50 and 70Gy doses were demonstrated when irradiated specimens were mixed into groups of fertile specimens. Consequently, these doses might be successfully applied to put sterile insect technique (SIT) into practice. 3. The results revealed that both studied essential oils (Callendula officinalis, Hippophae rhamnoides) exerted strong toxic effect on S. granarius, but C. officinalis triggered higher mortality. The efficacy (94.62 ± 2.63%) was reached after a 48 hours exposure to H. rhamnoides oil at 2ml/kg while the application of 2ml/kg of C. officinalis oil for 24 hours produced 98.94 ± 1.00% mortality rate. Mortality was 100% at 5 ml/kg of H. rhamnoides after 24 hours duration of its application, while with C. officinalis the same value could be reached after a 12 hour-exposure to the oil. Both essential oils applied were eliminated the progeny.Keywords: Sitophilus granarius, stored product, protection, alternative solutions
Procedia PDF Downloads 1701186 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions
Procedia PDF Downloads 2751185 An Exploratory Study Applied to Search Relationship between Humans and Universe
Authors: Mohamed Hashelaf, Ahmed Al-Osdody
Abstract:
In this paper, we focused our efforts on one of the vaguest subjects in astrophysics that is the formation and evolution of the universe until the arrival of humans. Through an in-depth exploration of the origins of the universe, understanding what has happened since the Big Bang until now and checking the history of creation, we can answer questions about the future of life, the possibility of its existence elsewhere in the universe and to be able to understand how we came, what our role in the circle of life is and what the future of our development will be. Here is where we used systematic steps that allowed us first and foremost to identify the reason behind the big bang itself that formed a large cloud of cosmic dust. Then after a period of time from the expansion of the universe and its coolness, the initial molecules of gases from the cosmic cloud began to condense, forming a very dense field of gravity that after millions of years led to the formation of stars, galaxies, even earth and the else planets. Finally, it became clear before us that after the earth has formed, the existence of liquid water made it possible for life to form, starting from the bacteria all the way until the appearance of the humans that we know today. But it does not stop here. If we look and contemplate in ourselves as humans, we will understand that the universe is inside us and that’s what makes us exceptional. All of this means that just as life on earth was created, it could have been on other planets as well. It also means that we are the universe’s key to understand itself.Keywords: Big Bang, cosmic dust, primary elements, universe
Procedia PDF Downloads 1351184 Morphological Evaluation of Mesenchymal Stem Cells Derived from Adipose Tissue of Dog Treated with Different Concentrations of Nano-Hydroxy Apatite
Authors: K. Barbaro, F. Di Egidio, A. Amaddeo, G. Lupoli, S. Eramo, G. Barraco, D. Amaddeo, C. Gallottini
Abstract:
In this study, we wanted to evaluate the effects of nano-hydroxy apatite (NHA) on mesenchymal stem cells extracted from subcutaneous adipose tissue of the dog. The stem cells were divided into 6 experimental groups at different concentrations of NHA. The comparison was made with a control group of stem cell grown in standard conditions without NHA. After 1 week, the cells were fixed with 10% buffered formalin for 1 hour at room temperature and stained with Giemsa, measured at the inverted optical microscope. The morphological evaluation of the control samples and those treated showed that stem cells adhere to the substrate and proliferate in the presence of nanohydroxy apatite at different concentrations showing no detectable toxic effects.Keywords: nano-hydroxy apatite, adipose mesenchymal stem cells, dog, morphological evaluation
Procedia PDF Downloads 4741183 Carcinogenic Polycyclic Aromatic Hydrocarbons in Urban Air Particulate Matter
Authors: A. Szabó Nagy, J. Szabó, Zs. Csanádi, J. Erdős
Abstract:
An assessment of the air quality of Győr (Hungary) was performed by determining the ambient concentrations of PM10-bound carcinogenic polycyclic aromatic hydrocarbons (cPAHs) in different seasons. A high volume sampler was used for the collection of ambient aerosol particles, and the associated cPAH compounds (benzo[a]pyrene (BaP), benzo[a]anthracene, benzofluoranthene isomers, indeno[123-cd]pyrene and dibenzo[ah]anthracene) were analyzed by a gas chromatographic method. Higher mean concentrations of total cPAHs were detected in samples collected in winter (9.62 ng/m3) and autumn (2.69 ng/m3) compared to spring (1.05 ng/m3) and summer (0.21 ng/m3). The calculated BaP toxic equivalent concentrations have also reflected that the local population appears to be exposed to significantly higher cancer risk in the heating seasons. Moreover, the concentration levels of cPAHs determined in this study were compared to other Hungarian urban sites.Keywords: air, carcinogenic, polycyclic aromatic hydrocarbons (PAH), PM10
Procedia PDF Downloads 2741182 Dispersion-Less All Reflective Split and Delay Unit for Ultrafast Metrology
Authors: Akansha Tyagi, Mehar S. Sidhu, Ankur Mandal, Sanjay Kapoor, Sunil Dahiya, Jan M. Rost, Thomas Pfeifer, Kamal P. Singh
Abstract:
An all-reflective split and delay unit is designed for dispersion free measurement of broadband ultrashort pulses using a pair of reflective knife edge prism for splitting and recombining of the measuring pulse. It is based on symmetrical wavefront splitting of the measuring pulse having two separate arms to independently shape both split parts. We have validated our delay line with NIR –femtosecond pulse measurement centered at 800 nm using second harmonic-Interferometric frequency resolved optical gating (SH-IFROG). The delay line is compact, easy to align and provides attosecond stability and precision and thus make it more versatile for wide range of applications in ultrafast measurements. We envision that the present delay line will find applications in IR-IR controlling for high harmonic generation (HHG) and attosecond IR-XUV pump-probe measurements with solids and gases providing attosecond resolution and wide delay range.Keywords: HHG, nonlinear optics, pump-probe spectroscopy, ultrafast metrology
Procedia PDF Downloads 2011181 Collective Movement between Two Lego EV3 Mobile Robots
Authors: Luis Fernando Pinedo-Lomeli, Rosa Martha Lopez-Gutierrez, Jose Antonio Michel-Macarty, Cesar Cruz-Hernandez, Liliana Cardoza-Avendaño, Humberto Cruz-Hernandez
Abstract:
Robots are working in industry and services performing repetitive or dangerous tasks, however, when flexible movement capabilities and complex tasks are required, the use of many robots is needed. Also, productivity can be improved by reducing times to perform tasks. In the last years, a lot of effort has been invested in research and development of collective control of mobile robots. This interest is justified as there are many advantages when two or more robots are collaborating in a particular task. Some examples are: cleaning toxic waste, transportation and manipulation of objects, exploration, and surveillance, search and rescue. In this work a study of collective movements of mobile robots is presented. A solution of collisions avoidance is developed. This solution is levered on a communication implementation that allows coordinate movements in different paths were avoiding obstacles.Keywords: synchronization, communication, robots, legos
Procedia PDF Downloads 4341180 Sniff-Camera for Imaging of Ethanol Vapor in Human Body Gases after Drinking
Authors: Toshiyuki Sato, Kenta Iitani, Koji Toma, Takahiro Arakawa, Kohji Mitsubayashi
Abstract:
A 2-dimensional imaging system (Sniff-camera) for gaseous ethanol emissions from a human palm skin was constructed and demonstrated. This imaging system measures gaseous ethanol concentrations as intensities of chemiluminescence (CL) by luminol reaction induced by alcohol oxidase and luminol-hydrogen peroxide system. A conversion of ethanol distributions and concentrations to 2-dimensional CL was conducted on an enzyme-immobilized mesh substrate in a dark box, which contained a luminol solution. In order to visualize ethanol emissions from human palm skin, we developed highly sensitive and selective imaging system for transpired gaseous ethanol at sub ppm-levels. High sensitivity imaging allows us to successfully visualize the emissions dynamics of transdermal gaseous ethanol. The intensity of each pixel on the palm shows the reflection of ethanol concentrations distributions based on the metabolism of oral alcohol administration. This imaging system is significant and useful for the assessment of ethanol measurement of the palmar skin.Keywords: sniff-camera, gas-imaging, ethanol vapor, human body gas
Procedia PDF Downloads 3711179 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic
Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña
Abstract:
Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.Keywords: remote sensing, intertidal sediment, airborne sensors, heavy metals, eTOCoxicity, robust statistic, estimation
Procedia PDF Downloads 4231178 Anthropogenic Impact on Surface and Groundwaters Quality in the Western Part of the River Nile, Elsaff Village, Giza
Authors: Mohamed Elkashouty, Mohamed Yehia, Ahmed Tawfuk
Abstract:
The study area is located in the southern part of Giza Governorate at both side of the Nile Valley. A combination of major and trace elements have been used to classify surface- and ground-waters in El Kurimat village, Egypt. The main purpose of the project is to investigate the surface-and ground-waters quality and hydrochemical evaluation. The situation is further complicated by contamination with lithogenic and anthropogenic (agricultural and sewage wastewaters) sources and low groundwater management strategies. The Quaternary aquifer consists of sands and gravels of Pleistocene age intercalated with clay lenses and overlain by silty clay aquitard (Holocene). The semi-pervious silty clay aquitard of the Holocene Nile sediments cover the Quaternary aquifer in most areas. The groundwater flows generally from southwest to northeast. To achieve this target, thirty five and seventy three samples were collected from surface– and ground-waters within summer and winter seasons 2009-2010). Total dissolved solids (TDS), cations, anions, NO2, NO3, PO4 , Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, F, Sb, Se, Sn, Sr and V) were determined in water samples. Grain size analysis was achieved to eight soil samples and measured the organic matter percent in different fractions. The TDS concentration is high in Arab El Ein canal by lithogenic and anthropogenic sources. The average concentrations of TDS in the River Nile are 245 (summer) and 254 ppm (winter). NO3 content ranges from 1.7 to 12 mg/l (summer), while in winter it ranges from 0.4 to 2.4. Most of the toxic metal concentrations are below the drinking and irrigation guidelines except Mn, V, Cr, Al, and Fe, which are higher than the guidelines in some canals and drains. The TDS concentration in groundwater increases toward northeastern and northwestern part of the study area (i.e. toward limestone plateau). It is due to hydrogeological interconnection between Quaternary and Eocene aquifer (saline water), wastewater dump and recharge from wadi El Atfihi wastewater. There is a good match between the hydrogeology and the hydrogeochemistry. Total dissolved solid in groundwater increases toward southwestern part, may be due to hydrogeological interconnection between Quaternary and Eocene aquifer and leakage from agricultural waste water of El Mohut drain. Fe, Mn, Cr, Al, PO4 and NO3 concentrations are high due to anthropogenic sources, therefore they are unsuitable for drinking. The average concentration of Cr, Cu, Fe, Mn &Zn are higher in winter than those in summer due to winter drought. The organic matter content in soil are increases in the northeastern and southwestern part, with different fractions, sue to agricultural wastewaters. Reused of contaminated surface- and ground-waters samples by mixing with fresh water (By AquaChem) was estimated to increase the income per capita.Keywords: surface water, groundwater, major ions, toxic metals
Procedia PDF Downloads 2931177 Cytotoxicity and Genotoxicity of Glyphosate and Its Two Impurities in Human Peripheral Blood Mononuclear Cells
Authors: Marta Kwiatkowska, Paweł Jarosiewicz, Bożena Bukowska
Abstract:
Glyphosate (N-phosphonomethylglycine) is a non-selected broad spectrum ingredient in the herbicide (Roundup) used for over 35 years for the protection of agricultural and horticultural crops. Glyphosate was believed to be environmentally friendly but recently, a large body of evidence has revealed that glyphosate can negatively affect on environment and humans. It has been found that glyphosate is present in the soil and groundwater. It can also enter human body which results in its occurrence in blood in low concentrations of 73.6 ± 28.2 ng/ml. Research conducted for potential genotoxicity and cytotoxicity can be an important element in determining the toxic effect of glyphosate. Due to regulation of European Parliament 1107/2009 it is important to assess genotoxicity and cytotoxicity not only for the parent substance but also its impurities, which are formed at different stages of production of major substance – glyphosate. Moreover verifying, which of these compounds are more toxic is required. Understanding of the molecular pathways of action is extremely important in the context of the environmental risk assessment. In 2002, the European Union has decided that glyphosate is not genotoxic. Unfortunately, recently performed studies around the world achieved results which contest decision taken by the committee of the European Union. World Health Organization (WHO) in March 2015 has decided to change the classification of glyphosate to category 2A, which means that the compound is considered to "probably carcinogenic to humans". This category relates to compounds for which there is limited evidence of carcinogenicity to humans and sufficient evidence of carcinogenicity on experimental animals. That is why we have investigated genotoxicity and cytotoxicity effects of the most commonly used pesticide: glyphosate and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA) and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs), mostly lymphocytes. DNA damage (analysis of DNA strand-breaks) using the single cell gel electrophoresis (comet assay) and ATP level were assessed. Cells were incubated with glyphosate and its impurities: PMIDA and bis-(phosphonomethyl)amine at concentrations from 0.01 to 10 mM for 24 hours. Evaluating genotoxicity using the comet assay showed a concentration-dependent increase in DNA damage for all compounds studied. ATP level was decreased to zero as a result of using the highest concentration of two investigated impurities, like bis-(phosphonomethyl)amine and PMIDA. Changes were observed using the highest concentration at which a person can be exposed as a result of acute intoxication. Our survey leads to a conclusion that the investigated compounds exhibited genotoxic and cytotoxic potential but only in high concentrations, to which people are not exposed environmentally. Acknowledgments: This work was supported by the Polish National Science Centre (Contract-2013/11/N/NZ7/00371), MSc Marta Kwiatkowska, project manager.Keywords: cell viability, DNA damage, glyphosate, impurities, peripheral blood mononuclear cells
Procedia PDF Downloads 4821176 Novel Synthesis of Metal Oxide Nanoparticles from Type IV Deep Eutectic Solvents
Authors: Lorenzo Gontrani, Marilena Carbone, Domenica Tommasa Donia, Elvira Maria Bauer, Pietro Tagliatesta
Abstract:
One of the fields where DES shows remarkable added values is the synthesis Of inorganic materials, in particular nanoparticles. In this field, the higher- ent and highly-tunable nano-homogeneities of DES structure give origin to a marked templating effect, a precious role that has led to the recent bloom of a vast number of studies exploiting these new synthesis media to prepare Nanomaterials and composite structures of various kinds. In this contribution, the most recent developments in the field will be reviewed, and some ex-citing examples of novel metal oxide nanoparticles syntheses using non-toxic type-IV Deep Eutectic Solvents will be described. The prepared materials possess nanometric dimensions and show flower-like shapes. The use of the pre- pared nanoparticles as fluorescent materials for the detection of various contaminants is under development.Keywords: metal deep eutectic solvents, nanoparticles, inorganic synthesis, type IV DES, lamellar
Procedia PDF Downloads 1351175 4-Chlorophenol Degradation in Water Using TIO₂-X%ZnS Synthesized by One-Step Sol-Gel Method
Authors: M. E. Velásquez Torres, F. Tzompantzi, J. C. Castillo-Rodríguez, A. G. Romero Villegas, S. Mendéz-Salazar, C. E. Santolalla-Vargas, J. Cardoso-Martínez
Abstract:
Photocatalytic degradation, as an advanced oxidation technology, is a promising method in organic pollutant degradation. In this sense, chlorophenols should be removed from the water because they are highly toxic. The TiO₂ - X% ZnS photocatalysts, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%), were synthesized using the one-step sol-gel method to use them as photocatalysts to degrade 4-chlorophenol. The photocatalysts were synthesized by a one-step sol-gel method. They were refluxed for 36 hours, dried at 80°C, and calcined at 400°C. They were labeled TiO₂ - X%ZnS, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%). The band gap was calculated using a Cary 100 UV-Visible Spectrometer with an integrating sphere accessory. Ban gap value of each photocatalyst was: 2.7 eV of TiO₂, 2.8 eV of TiO₂ - 3%ZnS and TiO₂ - 5%ZnS, 2.9 eV of TiO₂ - 10%ZnS and 2.6 eV of TiO2 - 15%ZnS. In a batch type reactor, under the irradiation of a mercury lamp (λ = 254 nm, Pen-Ray), degradations of 55 ppm 4-chlorophenol were obtained at 360 minutes with the synthesized photocatalysts: 60% (3% ZnS), 66% (5% ZnS), 74% (10% ZnS) and 58% (15% ZnS). In this sense, the best material as a photocatalyst was TiO₂ -10%ZnS with a degradation percentage of 74%.Keywords: 4-chlorophenol, photocatalysis, water pollutant, sol-gel
Procedia PDF Downloads 1321174 Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine
Authors: A. Calvin Antony, Sakthi Kumar Arul Prakash, V. R. Sanal Kumar
Abstract:
In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases.Keywords: alpha-beta double piston stirling engine , alpha stirling engine , beta double piston stirling engine , electricity from stirling engine
Procedia PDF Downloads 5341173 Effect of Preparation Temperature on Producing Graphene Oxide by Chemical Oxidation Approach
Authors: Rashad Al-Gaashani, Muataz A. Atieh
Abstract:
In this study, the effect of preparation temperature, namely room temperature (RT), 40, 60, and 85°C, on producing of high-quality graphene oxide (GO) has been investigated. GO samples have been prepared by chemical oxidation of graphite via a safe improved chemical technique using a blend of two deferent acids: sulphuric acid (H₂SO₄) and phosphoric acid (H₃PO₄) with volume ratio 4:1, respectively. potassium permanganate (KMnO₄) and hydrogen peroxide (H₂O₂) were applied as oxidizing agents. In this work, sodium nitrate (NaNO₃) was excluded, so the emission of hazardous explosive gases such as NO₂ and N₂O₂ was shunned. Ice and oil baths were used to carefully control the temperature. Several characterization instruments including X-Ray diffraction, transmission electron microscopy, scanning electron microscopy, electron dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy were used to study and compare the synthesized samples. The results indicated that GO can be prepared at RT with graphite oxide, and the purity of GO increased with rising of the solvent temperature. Optical properties of GO samples were studied using UV-vis absorption spectra.Keywords: chemical method, graphite, graphene oxide, optical properties
Procedia PDF Downloads 1641172 Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst
Authors: Draoua Zohra, Harrane Amine
Abstract:
The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed.Keywords: block copolymers, maghnite, montmorillonite, poly(e-caprolactone)
Procedia PDF Downloads 1681171 Ammonia Bunkering Spill Scenarios: Modelling Plume’s Behaviour and Potential to Trigger Harmful Algal Blooms in the Singapore Straits
Authors: Bryan Low
Abstract:
In the coming decades, the global maritime industry will face a most formidable environmental challenge -achieving net zero carbon emissions by 2050. To meet this target, the Maritime Port Authority of Singapore (MPA) has worked to establish green shipping and digital corridors with ports of several other countries around the world where ships will use low-carbon alternative fuels such as ammonia for power generation. While this paradigm shift to the bunkering of greener fuels is encouraging, fuels like ammonia will also introduce a new and unique type of environmental risk in the unlikely scenario of a spill. While numerous modelling studies have been conducted for oil spills and their associated environmental impact on coastal and marine ecosystems, ammonia spills are comparatively less well understood. For example, there is a knowledge gap regarding how the complex hydrodynamic conditions of the Singapore Straits may influence the dispersion of a hypothetical ammonia plume, which has different physical and chemical properties compared to an oil slick. Chemically, ammonia can be absorbed by phytoplankton, thus altering the balance of the marine nitrogen cycle. Biologically, ammonia generally serves the role of a nutrient in coastal ecosystems at lower concentrations. However, at higher concentrations, it has been found to be toxic to many local species. It may also have the potential to trigger eutrophication and harmful algal blooms (HABs) in coastal waters, depending on local hydrodynamic conditions. Thus, the key objective of this research paper is to support the development of a model-based forecasting system that can predict ammonia plume behaviour in coastal waters, given prevailing hydrodynamic conditions and their environmental impact. This will be essential as ammonia bunkering becomes more commonplace in Singapore’s ports and around the world. Specifically, this system must be able to assess the HAB-triggering potential of an ammonia plume, as well as its lethal and sub-lethal toxic effects on local species. This will allow the relevant authorities to better plan risk mitigation measures or choose a time window with the ideal hydrodynamic conditions to conduct ammonia bunkering operations with minimal risk. In this paper, we present the first part of such a forecasting system: a jointly coupled hydrodynamic-water quality model that can capture how advection-diffusion processes driven by ocean currents influence plume behaviour and how the plume interacts with the marine nitrogen cycle. The model is then applied to various ammonia spill scenarios where the results are discussed in the context of current ammonia toxicity guidelines, impact on local ecosystems, and mitigation measures for future bunkering operations conducted in the Singapore Straits.Keywords: ammonia bunkering, forecasting, harmful algal blooms, hydrodynamics, marine nitrogen cycle, oceanography, water quality modeling
Procedia PDF Downloads 831170 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time
Procedia PDF Downloads 2891169 Studies on Modified Zinc Oxide Nanoparticles as Potential Drug Carrier
Authors: Jolanta Pulit-Prociak, Olga Dlugosz, Marcin Banach
Abstract:
The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. The releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate.Keywords: nanomaterials, zinc oxide, drug delivery system, toxicity
Procedia PDF Downloads 1911168 Effect of Hydrogen on the Performance of a Methanol SI-Engine at City Driving Conditions
Authors: Junaid Bin Aamir, Ma Fanhua
Abstract:
Methanol is one of the most suitable alternative fuels for replacing gasoline in present and future spark-ignited engines. However, for pure methanol engines, cold start problems and misfires are observed under certain operating conditions. Hydrogen provides a solution for such problems. This paper experimentally investigated the effect of hydrogen on the performance of a pure methanol SI-engine at city driving conditions (1500 rpm speed and 1.18 excess air ratio). Hydrogen was used as a part of methanol reformed syngas (67% hydrogen by volume). 4% by mass of the total methanol converted to hydrogen and other constituent gases, was used in each cycle. Port fuel injection was used to inject methanol and hydrogen-rich syngas into the 4-cylinder engine. The results indicated an increase in brake thermal efficiency up to 5% with the addition of hydrogen, a decrease in brake specific fuel consumption up to 200 g/kWh, and a decrease in exhaust gas temperature by 100°C for all mean effective pressures. Hydrogen addition also decreased harmful exhaust emissions significantly. There was a reduction in THC emissions up to 95% and CO emissions up to 50%. NOx emissions were slightly increased (up to 15%), but they can be reduced to zero by lean burn strategy.Keywords: alternative fuels, hydrogen, methanol, performance, spark ignition engines
Procedia PDF Downloads 3061167 Proposal for Sustainable Construction of a New College Hostel Building
Authors: Reshma Raskar-Phule, Abhay Shinde, Manesh Konkani, Rohit Nighot, Shrirang Mahajan, Viraj Thorat
Abstract:
Sustainability in construction projects can be considered from three dimensions - environment, economy and society. Key concepts of sustainable construction include the protection of the natural environment, choice of non-toxic materials, reduction and reuse of resources, waste minimization, and life cycle analysis. The present paper attempts to identify and analyze the use of sustainable construction materials for a new college hostel building in terms of sustainability development indices (SDIs). Low SDI materials, say as composite fiberglass reinforcement (SDI 4074.96), compressed earth blocks (SDI 0.47), and fiber-reinforced doors (SDI 0.13) are the proposed sustainable materials for the hostel building. Indian Green Building Certification (IGBC) is applied for the hostel building and it earns 5 points out of total 16 points for criterion 5 – Building Materials and Resources of IGBC.Keywords: sustainable development, construction materials, IGBC, hostel building
Procedia PDF Downloads 1171166 Potential of ᵞ-Polyglutamic Acid for Cadmium Toxicity Alleviation in Rice
Authors: N. Kotabin, Y. Tahara, K. Issakul, O. Chunhachart
Abstract:
Cadmium (II) (Cd) is one of the major toxic elemental pollutants which is hazardous for humans, animals and plants. γ-Polyglutamic acid (γ-PGA) is an extracellular biopolymer produced by several species of Bacillus which has been reported to be an effective biosorbent for metal ions. The effect of γ-PGA on growth of rice grown under laboratory conditions was investigated. Rice seeds were germinated and then grown at 30±1°C on filter paper soaked with Cd solution and γ-PGA for 7 days. The result showed that Cd significantly inhibited the growth of roots and shoots by reducing root and shoot lengths. Fresh and dry weights also decreased compared with control; however, the addition of 500 mg•L-1 γ-PGA alleviated rice seedlings from the adverse effects of Cd. The analysis of physiological traits revealed that Cd caused a decrease in the total chlorophyll and soluble protein contents and amylase activities in all treatments. The Cd content in seedling tissues increased for the Cd 250 μM treatment (P < 0.05) but the addition of 500 mg•L-1 γ-PGA resulted in a noticeable decrease in Cd (P < 0.05).Keywords: polyglutamic acid, cadmium, rice, bacillus subtilis
Procedia PDF Downloads 3001165 A Global Fuel Combustion Data Product and Its Application
Authors: Shu Tao, Rong Wang, Huizhong Shen, Ye Huang
Abstract:
High-resolution mapping of fuel combustion is essential for reducing uncertainties in assessments of greenhouse gases and air pollutant emissions. Such inventories provide valuable information for inferring carbon sinks, modeling pollutant transport, and developing control strategies. Previous inventories included only a few fuel types and were derived using national population proxies which may distort the geographical variation within countries. In this study, a global 0.1 degree by 0.1 degree geo-referenced inventory of fuel combustion (PKU-FUEL-2007) was developed for 64 fuel sub-types along with uncertainty analysis for the year 2007. Sub-national fuel consumption of large countries and major power-station locations were used. The disaggregation error can be reduced significantly by using the sub-nationally energy data, because the uneven distribution of per-capita fuel consumption within countries is taken into consideration. The PKU-FUEL was used to generate global emission inventories of CO2 (PKU-CO2-2007), polycyclic aromatic hydrocarbons (PKU-PAHs-2007), and black carbons (PKU-BC-2007). Atmospheric transport modeling and expsoure assessment were conducted for BC and PAHs based on the inventory.Keywords: fuel, emission, BC, PAHs, atmospheric transport, exposure
Procedia PDF Downloads 3291164 Pesticide Risk: A Study on the Effectiveness of Organic/Biopesticides in Sustainable Agriculture
Authors: Berk Kılıç, Ömer Aydın, Kerem Mestani, Defne Uzun
Abstract:
In agriculture and farming, pesticides are frequently used to kill off or fend off any pests (bugs, bacteria, fungi, etc.). However, traditional pesticides have proven to have harmful effects on both the environment and the human body, such as hazards in the endocrine, neurodevelopmental, and reproductive systems. This experiment aims to test the effectiveness of organic/bio-pesticides (environmentally friendly pesticides) compared to traditional pesticides. Black pepper and garlic will be used as biopesticides in this experiment. The results support that organic farming applying organic pesticides operates through non-toxic mechanisms, offering minimal threats to human well-being and the environment. Consequently, consuming organic produce can significantly diminish the dangers associated with pesticide intake. In this study, method is introduced to reduce pesticide-related risks by promoting organic farming techniques within organic/bio-pesticide usage.Keywords: pesticide, garlic, black pepper, bio-pesticide
Procedia PDF Downloads 681163 Treatment of Leaden Sludge of Algiers Refinery by Electrooxidation
Authors: K. Ighilahriz, M. Taleb Ahmed, R. Maachi
Abstract:
Oil industries are responsible for most cases of contamination of our ecosystem by oil and heavy metals. They are toxic and considered carcinogenic and dangerous even when they exist in trace amounts. At Algiers refinery, production, transportation, and refining of crude oil generate considerable waste in storage tanks; these residues result from the gravitational settling. The composition of these residues is essentially a mixture of hydrocarbon and lead. We propose in this work the application of electrooxidation treatment for the leachate of the leaden sludge. The effect of pH, current density and the electrolysis time were studied, the effectiveness of the processes is evaluated by measuring the chemical oxygen demand (COD). The dissolution is the best way to mobilize pollutants from leaden mud, so we conducted leaching before starting the electrochemical treatment. The process was carried out in batch mode using graphite anode and a stainless steel cathode. The results clearly demonstrate the compatibility of the technique used with the type of pollution studied. In fact, it allowed COD removal about 80%.Keywords: electrooxidation, leaching, leaden sludge, oil industry
Procedia PDF Downloads 2281162 Theoretical Analysis and Numerical Evaluation of the Flow inside the Supersonic Nozzle for Chemical Lasers
Authors: Mohammedi Ferhate, Hakim Chadli, Laggoun Chaouki
Abstract:
The main objectives of work in this area are, first, obtaining the high laser energies in short time durations needed for the feasibility studies of laser induced thermodynamically exothermic chemical reactions , second, investigating the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using dense gaseous media.. We present results from the early development of an F atom source appropriate for HF and DF chemical laser research. We next explain the very important difficulties encountered in working with dense gases for that purpose, and we shall describe how, especially at Evaluation of downstream-mixing scheme –levels transitions (001) → (100) and (001) → (020) gas dynamic laser The physical phenomena that control the operation of presently existing laser devices are now sufficiently well understood, so that it is possible to predict that new generations of lasers could be designed in the future. The proposed model of excitation and relaxation levels was finally proved by the computational numerical code of Matlab toolboxes of different parameters of nozzle.Keywords: hydrogen, combust, chemical laser, halogen atom
Procedia PDF Downloads 851161 Synthesis of Silver Nanoparticles by Different Types of Plants
Authors: Khamael Abualnaja, Hala M. Abo-Dief
Abstract:
Silver nanoparticles (AgNPs) are the subject of important recent interest, present in a large range of applications such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, we describe an effective and environmental-friendly technique of green synthesis of silver nanoparticles. Silver nanoparticles (AgNPs) synthesized using silver nitrate solution and the extract of mint, basil, orange peel and Tangerines peel which used as reducing agents. Silver Nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV–Vis absorption spectroscopy. SEM analysis showed the average particle size of mint, basil, orange peel, Tangerines peel are 30, 20, 12, 10 nm respectively. This is for the first time that any plant extract was used for the synthesis of nanoparticles.Keywords: silver nanoparticles, green synthesis, scanning electron microscopy, plants
Procedia PDF Downloads 258