Search results for: sub-channel code
851 Performance and Voyage Analysis of Marine Gas Turbine Engine, Installed to Power and Propel an Ocean-Going Cruise Ship from Lagos to Jeddah
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
An aero-derivative marine Gas Turbine engine model is simulated to be installed as the main propulsion prime mover to power a cruise ship which is designed and routed to transport intending Muslim pilgrims for the annual hajj pilgrimage from Nigeria to the Islamic port city of Jeddah in Saudi Arabia. A performance assessment of the Gas Turbine engine has been conducted by examining the effect of varying aerodynamic and hydrodynamic conditions encountered at various geographical locations along the scheduled transit route during the voyage. The investigation focuses on the overall behavior of the Gas Turbine engine employed to power and propel the ship as it operates under ideal and adverse conditions to be encountered during calm and rough weather according to the different seasons of the year under which the voyage may be undertaken. The variation of engine performance under varying operating conditions has been considered as a very important economic issue by determining the time the speed by which the journey is completed as well as the quantity of fuel required for undertaking the voyage. The assessment also focuses on the increased resistance caused by the fouling of the submerged portion of the ship hull surface with its resultant effect on the power output of the engine as well as the overall performance of the propulsion system. Daily ambient temperature levels were obtained by accessing data from the UK Meteorological Office while the varying degree of turbulence along the transit route and according to the Beaufort scale were also obtained as major input variables of the investigation. By assuming the ship to be navigating the Atlantic Ocean and the Mediterranean Sea during winter, spring and summer seasons, the performance modeling and simulation was accomplished through the use of an integrated Gas Turbine performance simulation code known as ‘Turbomach’ along with a Matlab generated code named ‘Poseidon’, all of which have been developed at the Power and Propulsion Department of Cranfield University. As a case study, the results of the various assumptions have further revealed that the marine Gas Turbine is a reliable and available alternative to the conventional marine propulsion prime movers that have dominated the maritime industry before now. The techno-economic and environmental assessment of this type of propulsion prime mover has enabled the determination of the effect of changes in weather and sea conditions on the ship speed as well as trip time and the quantity of fuel required to be burned throughout the voyage.Keywords: ambient temperature, hull fouling, marine gas turbine, performance, propulsion, voyage
Procedia PDF Downloads 186850 Numerical Investigation for Ductile Fracture of an Aluminium Alloy 6061 T-6: Assessment of Critical J-Integral
Authors: R. Bensaada, M. Almansba, M. Ould Ouali, R. Ferhoum, N. E. Hannachi
Abstract:
The aim of this work is to simulate the ductile fracture of SEN specimens in aluminium alloy. The assessment of fracture toughness is performed with the calculation of Jc (the critical value of J-Integral) through the resistance curves. The study is done using finite element code calculation ABAQUSTM including an elastic plastic with damage model of material’s behaviour. The procedure involves specimens of four different thicknesses and four ligament sizes for every thickness. The material of study is an aluminium alloy 6061-T6 for which the necessary parameters to complete the study are given. We found the same results for the same specimen’s thickness and for different ligament sizes when the fracture criterion is evaluated.Keywords: j-integral, critical-j, damage, fracture toughness
Procedia PDF Downloads 359849 MHD Equilibrium Study in Alborz Tokamak
Authors: Maryamosadat Ghasemi, Reza Amrollahi
Abstract:
Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be able to support this plasma equilibrium geometry. In this work the prepared numerical code based on radial basis functions are presented and used to solve the Grad–Shafranov (GS) equation for the axisymmetric equilibrium of tokamak plasma. The radial basis functions (RBFs) which is a kind of numerical meshfree method (MFM) for solving partial differential equations (PDEs) has appeared in the last decade and is developing significantly in the last few years. This technique is applied in this study to obtain the equilibrium configuration for Alborz Tokamak. The behavior of numerical solution convergences show the validation of this calculations.Keywords: equilibrium, grad–shafranov, radial basis functions, Alborz Tokamak
Procedia PDF Downloads 473848 Interaction of the Circumferential Lamb Wave with Delamination in the Middle of Pipe Wall
Authors: Li Ziming, He Cunfu, Liu Zenghua
Abstract:
With aim for delamination type defects detection in manufacturing process of seamless pipe,this paper studies the interaction of the circumferential lamb wave with delamination in aluminum pipe.The delamination is located in the middle of pipe wall.A numerical study is carried out,the circumferential lamb wave used here is CL0 mode,which is generated with a finite element method code.Wave structures from the simulation are compared with theoretical results to verify the model’s accuracy.Delamination along the circumferential direction is established by demerging nodes of the same coordinates.When CL0 mode is incident at the entrance and exit of a delamination,it generates new mode-CL1,undergoes multiple reverberation and mode conversions between the two ends of the delamination. Signals of different receptions are obtained to provide insight in using CL0 mode for locating the delamination.Keywords: circumferential lamb wave, delamination, FEM, seamless pipe
Procedia PDF Downloads 312847 Design an Expert System to Assess the Hydraulic System in Thermal and Hydrodynamic Aspect
Authors: Ahmad Abdul-Razzak Aboudi Al-Issa
Abstract:
Thermal and Hydrodynamic are basic aspects in any hydraulic system and therefore, they must be assessed with regard to this aspect before constructing the system. This assessment needs a good expertise in this aspect to obtain an efficient hydraulic system. Therefore, this study aims to build an expert system called Hydraulic System Calculations (HSC) to ensure a smooth operation for the hydraulic system. The expert system (HSC) had been designed and coded in an user-friendly interactive program called Microsoft Visual Basic 2010. The suggested code provides the designer with a number of choices to resolve the problem of hydraulic oil overheating which may arise during the continuous operation of the hydraulic unit. As a result, the HSC can minimize the human errors, effort, time and cost of hydraulic machine design.Keywords: fluid power, hydraulic system, thermal and hydrodynamic, expert system
Procedia PDF Downloads 445846 Quality and Coverage Assessment in Software Integration Based On Mutation Testing
Authors: Iyad Alazzam, Kenneth Magel, Izzat Alsmadi
Abstract:
The different activities and approaches in software testing try to find the most possible number of errors or failures with the least amount of possible effort. Mutation is a testing approach that is used to discover possible errors in tested applications. This is accomplished through changing one aspect of the software from its original and writes test cases to detect such change or mutation. In this paper, we present a mutation approach for testing software components integration aspects. Several mutation operations related to components integration are described and evaluated. A test case study of several open source code projects is collected. Proposed mutation operators are applied and evaluated. Results showed some insights and information that can help testing activities in detecting errors and improving coverage.Keywords: software testing, integration testing, mutation, coverage, software design
Procedia PDF Downloads 427845 An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification
Authors: Nicodemus M. J. Mbwambo, Yu-Shan Sun, Murali Sitaraman, Joan Krone
Abstract:
This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver.Keywords: automation, data abstraction, maps, specification, tree, verification
Procedia PDF Downloads 166844 Investigating the Influences of Long-Term, as Compared to Short-Term, Phonological Memory on the Word Recognition Abilities of Arabic Readers vs. Arabic Native Speakers: A Word-Recognition Study
Authors: Insiya Bhalloo
Abstract:
It is quite common in the Muslim faith for non-Arabic speakers to be able to convert written Arabic, especially Quranic Arabic, into a phonological code without significant semantic or syntactic knowledge. This is due to prior experience learning to read the Quran (a religious text written in Classical Arabic), from a very young age such as via enrolment in Quranic Arabic classes. As compared to native speakers of Arabic, these Arabic readers do not have a comprehensive morpho-syntactic knowledge of the Arabic language, nor can understand, or engage in Arabic conversation. The study seeks to investigate whether mere phonological experience (as indicated by the Arabic readers’ experience with Arabic phonology and the sound-system) is sufficient to cause phonological-interference during word recognition of previously-heard words, despite the participants’ non-native status. Both native speakers of Arabic and non-native speakers of Arabic, i.e., those individuals that learned to read the Quran from a young age, will be recruited. Each experimental session will include two phases: An exposure phase and a test phase. During the exposure phase, participants will be presented with Arabic words (n=40) on a computer screen. Half of these words will be common words found in the Quran while the other half will be words commonly found in Modern Standard Arabic (MSA) but either non-existent or prevalent at a significantly lower frequency within the Quran. During the test phase, participants will then be presented with both familiar (n = 20; i.e., those words presented during the exposure phase) and novel Arabic words (n = 20; i.e., words not presented during the exposure phase. ½ of these presented words will be common Quranic Arabic words and the other ½ will be common MSA words but not Quranic words. Moreover, ½ the Quranic Arabic and MSA words presented will be comprised of nouns, while ½ the Quranic Arabic and MSA will be comprised of verbs, thereby eliminating word-processing issues affected by lexical category. Participants will then determine if they had seen that word during the exposure phase. This study seeks to investigate whether long-term phonological memory, such as via childhood exposure to Quranic Arabic orthography, has a differential effect on the word-recognition capacities of native Arabic speakers and Arabic readers; we seek to compare the effects of long-term phonological memory in comparison to short-term phonological exposure (as indicated by the presentation of familiar words from the exposure phase). The researcher’s hypothesis is that, despite the lack of lexical knowledge, early experience with converting written Quranic Arabic text into a phonological code will help participants recall the familiar Quranic words that appeared during the exposure phase more accurately than those that were not presented during the exposure phase. Moreover, it is anticipated that the non-native Arabic readers will also report more false alarms to the unfamiliar Quranic words, due to early childhood phonological exposure to Quranic Arabic script - thereby causing false phonological facilitatory effects.Keywords: modern standard arabic, phonological facilitation, phonological memory, Quranic arabic, word recognition
Procedia PDF Downloads 357843 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites
Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan
Abstract:
All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite
Procedia PDF Downloads 100842 Price Control: A Comprehensive Step to Control Corruption in the Society
Authors: Muhammad Zia Ullah Baig, Atiq Uz Zama
Abstract:
The motivation of the project is to facilitate the governance body, as well as the common man in his/her daily life consuming product rates, to easily monitor the expense, to control the budget with the help of single SMS (message), e-mail facility, and to manage governance body by task management system. The system will also be capable of finding irregularities being done by the concerned department in mitigating the complaints generated by the customer and also provide a solution to overcome problems. We are building a system that easily controls the price control system of any country, we will feeling proud to give this system free of cost to Indian Government also. The system is able to easily manage and control the price control department of government all over the country. Price control department run in different cities under City District Government, so the system easily run in different cities with different SMS Code and decentralize Database ensure the non-functional requirement of system (scalability, reliability, availability, security, safety). The customer request for the government official price list with respect to his/her city SMS code (price list of all city available on website or application), the server will forward the price list through a SMS, if the product is not available according to the price list the customer generate a complaint through an SMS or using website/smartphone application, complaint is registered in complaint database and forward to inspection department when the complaint is entertained, the inspection department will forward a message about the complaint to customer. Inspection department physically checks the seller who does not follow the price list, but the major issue of the system is corruption, may be inspection officer will take a bribe and resolve the complaint (complaint is fake) in that case the customer will not use the system. The major issue of the system is to distinguish the fake and real complain and fight for corruption in the department. To counter the corruption, our strategy is to rank the complain if the same type of complaint is generated the complaint is in high rank and the higher authority will also notify about that complain, now the higher authority of department have reviewed the complaint and its history, the officer who resolve that complaint in past and the action against the complaint, these data will help in decision-making process, if the complaint was resolved because the officer takes bribe, the higher authority will take action against that officer. When the price of any good is decided the market/former representative is also there, with the mutual understanding of both party the price is decided, the system facilitate the decision-making process. The system shows the price history of any goods, inflation rate, available supply, demand, and the gap between supply and demand, these data will help to allot for the decision-making process.Keywords: price control, goods, government, inspection, department, customer, employees
Procedia PDF Downloads 411841 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks
Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano
Abstract:
The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.Keywords: crack, critical flow, leak, roughness
Procedia PDF Downloads 180840 Numerical Modeling the Cavitating Flow in Injection Nozzle Holes
Authors: Ridha Zgolli, Hatem Kanfoudi
Abstract:
Cavitating flows inside a diesel injection nozzle hole were simulated using a mixture model. A 2D numerical model is proposed in this paper to simulate steady cavitating flows. The Reynolds-averaged Navier-Stokes equations are solved for the liquid and vapor mixture, which is considered as a single fluid with variable density which is expressed as function of the vapor volume fraction. The closure of this variable is provided by the transport equation with a source term TEM. The processes of evaporation and condensation are governed by changes in pressure within the flow. The source term is implanted in the CFD code ANSYS CFX. The influence of numerical and physical parameters is presented in details. The numerical simulations are in good agreement with the experimental data for steady flow.Keywords: cavitation, injection nozzle, numerical simulation, k–ω
Procedia PDF Downloads 401839 Research on Fuzzy Test Framework Based on Concolic Execution
Authors: Xiong Xie, Yuhang Chen
Abstract:
Vulnerability discovery technology is a significant field of the current. In this paper, a fuzzy framework based on concolic execution has been proposed. Fuzzy test and symbolic execution are widely used in the field of vulnerability discovery technology. But each of them has its own advantages and disadvantages. During the path generation stage, path traversal algorithm based on generation is used to get more accurate path. During the constraint solving stage, dynamic concolic execution is used to avoid the path explosion. If there is external call, the concolic based on function summary is used. Experiments show that the framework can effectively improve the ability of triggering vulnerabilities and code coverage.Keywords: concolic execution, constraint solving, fuzzy test, vulnerability discovery
Procedia PDF Downloads 228838 STML: Service Type-Checking Markup Language for Services of Web Components
Authors: Saqib Rasool, Adnan N. Mian
Abstract:
Web components are introduced as the latest standard of HTML5 for writing modular web interfaces for ensuring maintainability through the isolated scope of web components. Reusability can also be achieved by sharing plug-and-play web components that can be used as off-the-shelf components by other developers. A web component encapsulates all the required HTML, CSS and JavaScript code as a standalone package which must be imported for integrating a web component within an existing web interface. It is then followed by the integration of web component with the web services for dynamically populating its content. Since web components are reusable as off-the-shelf components, these must be equipped with some mechanism for ensuring their proper integration with web services. The consistency of a service behavior can be verified through type-checking. This is one of the popular solutions for improving the quality of code in many programming languages. However, HTML does not provide type checking as it is a markup language and not a programming language. The contribution of this work is to introduce a new extension of HTML called Service Type-checking Markup Language (STML) for adding support of type checking in HTML for JSON based REST services. STML can be used for defining the expected data types of response from JSON based REST services which will be used for populating the content within HTML elements of a web component. Although JSON has five data types viz. string, number, boolean, object and array but STML is made to supports only string, number and object. This is because of the fact that both object and array are considered as string, when populated in HTML elements. In order to define the data type of any HTML element, developer just needs to add the custom STML attributes of st-string, st-number and st-boolean for string, number and boolean respectively. These all annotations of STML are used by the developer who is writing a web component and it enables the other developers to use automated type-checking for ensuring the proper integration of their REST services with the same web component. Two utilities have been written for developers who are using STML based web components. One of these utilities is used for automated type-checking during the development phase. It uses the browser console for showing the error description if integrated web service is not returning the response with expected data type. The other utility is a Gulp based command line utility for removing the STML attributes before going in production. This ensures the delivery of STML free web pages in the production environment. Both of these utilities have been tested to perform type checking of REST services through STML based web components and results have confirmed the feasibility of evaluating service behavior only through HTML. Currently, STML is designed for automated type-checking of integrated REST services but it can be extended to introduce a complete service testing suite based on HTML only, and it will transform STML from Service Type-checking Markup Language to Service Testing Markup Language.Keywords: REST, STML, type checking, web component
Procedia PDF Downloads 254837 Cavitating Flow through a Venturi Using Computational Fluid Dynamics
Authors: Imane Benghalia, Mohammed Zamoum, Rachid Boucetta
Abstract:
Hydrodynamic cavitation is a complex physical phenomenon that appears in hydraulic systems (pumps, turbines, valves, Venturi tubes, etc.) when the fluid pressure decreases below the saturated vapor pressure. The works carried out in this study aimed to get a better understanding of the cavitating flow phenomena. For this, we have numerically studied a cavitating bubbly flow through a Venturi nozzle. The cavitation model is selected and solved using a commercial computational fluid dynamics (CFD) code. The obtained results show the effect of the inlet pressure (10, 7, 5, and 2 bars) of the Venturi on pressure, the velocity of the fluid flow, and the vapor fraction. We found that the inlet pressure of the Venturi strongly affects the evolution of the pressure, velocity, and vapor fraction formation in the cavitating flow.Keywords: cavitating flow, CFD, phase change, venturi
Procedia PDF Downloads 84836 Computational Investigation of Gas-Solid Flow in High Pressure High Temperature Filter
Authors: M. H. Alhajeri, Hamad M. Alhajeri, A. H. Alenezi
Abstract:
This paper reports a Computational Fluid Dynamics (CFD) investigation for a high-temperature high-pressure filtration (ceramic candle filter). However, parallel flow to the filter is considered in this study. Different face (filtration) velocities are examined using the CFD code, FLUENT. Different sizes of particles are tracked through the domain to find the height at which the particles will impinge on the filter surface. Furthermore, particle distribution around the filter (or filter cake) is studied to design efficient cleaning mechanisms. Gravity effect to the particles with various inlet velocities and pressure drop are both considered. In the CFD study, it is found that the gravity influence should not be ignored if the particle sizes exceed 1 micron.Keywords: fluid flow, CFD, filtration, HTHP
Procedia PDF Downloads 204835 Reinforced Concrete Design Construction Issues and Earthquake Failure-Damage Responses
Authors: Hasan Husnu Korkmaz, Serra Zerrin Korkmaz
Abstract:
Earthquakes are the natural disasters that threat several countries. Turkey is situated on a very active earthquake zone. During the recent earthquakes, thousands of people died due to failure of reinforced concrete structures. Although Turkey has a very sufficient earthquake code, the design and construction mistakes were repeated for old structures. Lack of the control mechanism during the construction process may be the most important reason of failure. The quality of the concrete and poor detailing of steel or reinforcement is the most important headings. In this paper, the reasons of failure of reinforced concrete structures were summarized with relevant photos. The paper is beneficial for civil engineers as well as architect who are in the process of construction and design of structures in earthquake zones.Keywords: earthquake, reinforced concrete structure, failure, material
Procedia PDF Downloads 365834 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending
Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim
Abstract:
Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions
Procedia PDF Downloads 104833 Tracy: A Java Library to Render a 3D Graphical Human Model
Authors: Sina Saadati, Mohammadreza Razzazi
Abstract:
Since Java is an object-oriented language, It can be used to solve a wide range of problems. One of the considerable usages of this language can be found in Agent-based modeling and simulation. Despite the significant power of Java, There is not an easy method to render a 3-dimensional human model. In this article, we are about to develop a library which helps modelers present a 3D human model and control it with Java. The library runs two server programs. The first one is a web page server that can connect to any browser and present an HTML code. The second server connects to the browser and controls the movement of the model. So, the modeler will be able to develop a simulation and display a good-looking human model without any knowledge of any graphical tools.Keywords: agent-based modeling and simulation, human model, graphics, Java, distributed systems
Procedia PDF Downloads 111832 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus
Authors: Yesim Tumsek, Erkan Celebi
Abstract:
In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus
Procedia PDF Downloads 269831 Strategic Workplace Security: The Role of Malware and the Threat of Internal Vulnerability
Authors: Modesta E. Ezema, Christopher C. Ezema, Christian C. Ugwu, Udoka F. Eze, Florence M. Babalola
Abstract:
Some employees knowingly or unknowingly contribute to loss of data and also expose data to threat in the process of getting their jobs done. Many organizations today are faced with the challenges of how to secure their data as cyber criminals constantly devise new ways of attacking the organization’s secret data. However, this paper enlists the latest strategies that must be put in place in order to protect these important data from being attacked in a collaborative work place. It also introduces us to Advanced Persistent Threats (APTs) and how it works. The empirical study was conducted to collect data from the employee in data centers on how data could be protected from malicious codes and cyber criminals and their responses are highly considered to help checkmate the activities of malicious code and cyber criminals in our work places.Keywords: data, employee, malware, work place
Procedia PDF Downloads 382830 How Geant4 Hadronic Models Handle Tracking of Pion Particles Resulting from Antiproton Annihilation
Authors: M. B. Tavakoli, R. Reiazi, M. M. Mohammadi, K. Jabbari
Abstract:
From 2003, AD4/ACE experiment in CERN tried to investigate different aspects of antiproton as a new modality in particle therapy. Because of lack of reliable absolute dose measurements attempts to find out the radiobiological characteristics of antiproton have not reached to a reasonable result yet. From the other side, application of Geant4 in medical approaches is increased followed by Geant4-DNA project which focuses on using this code to predict radiation effects in the cellular scale. This way we can exploit Geant4-DNA results for antiproton. Unfortunately, previous studies showed there are serious problem in simulating an antiproton beam using Geant4. Since most of the problem was in the Bragg peak region which antiproton annihilates there, in this work we tried to understand if the problem came from the way in which Geant4 handles annihilation products especially pion particles. This way, we can predict the source of the dose discrepancies between Geant4 simulations and dose measurements done in CERN.Keywords: Geant4, antiproton, annihilation, pion plus, pion minus
Procedia PDF Downloads 657829 Magnetohydrodynamic Flows in a Misaligned Duct under a Uniform Magnetic Field
Authors: Mengqi Zhu, Chang Nyung Kim
Abstract:
This study numerically investigates three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a misaligned duct under a uniform magnetic field. The duct consists of two misaligned horizontal channels (one is inflow channel, the other is outflow channel) and one central vertical channel. Computational fluid dynamics simulations are performed to predict the behavior of the MHD flows, using commercial code CFX. In the current study, a case with Hartmann number 1000 is considered. The electromagnetic features of LM MHD flows are elucidated to examine the interdependency of the flow velocity, current density, electric potential, pressure drop and Lorentz force. The results show that pressure decreases linearly along the main flow direction.Keywords: CFX, liquid-metal magnetohydrodynamic flows, misaligned duct, pressure drop
Procedia PDF Downloads 284828 Heterogeneous Artifacts Construction for Software Evolution Control
Authors: Mounir Zekkaoui, Abdelhadi Fennan
Abstract:
The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.Keywords: heterogeneous software artifacts, software evolution control, unified approach, meta model, software architecture
Procedia PDF Downloads 445827 Prediction of Unsaturated Permeability Functions for Clayey Soil
Authors: F. Louati, H. Trabelsi, M. Jamei
Abstract:
Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation
Procedia PDF Downloads 299826 Structural, Electronic and Optical Properties of LiₓNa1-ₓH for Hydrogen Storage
Authors: B. Bahloul
Abstract:
This study investigates the structural, electronic, and optical properties of LiH and NaH compounds, as well as their ternary mixed crystals LiₓNa1-ₓH, adopting a face-centered cubic structure with space group Fm-3m (number 225). The structural and electronic characteristics are examined using density functional theory (DFT), while empirical methods, specifically the modified Moss relation, are employed for analyzing optical properties. The exchange-correlation potential is determined through the generalized gradient approximation (PBEsol-GGA) within the density functional theory (DFT) framework, utilizing the projected augmented wave pseudopotentials (PAW) approach. The Quantum Espresso code is employed for conducting these calculations. The calculated lattice parameters at equilibrium volume and the bulk modulus for x=0 and x=1 exhibit good agreement with existing literature data. Additionally, the LiₓNa1-ₓH alloys are identified as having a direct band gap.Keywords: DFT, structural, electronic, optical properties
Procedia PDF Downloads 71825 Study of the Behavior of Bolted Joints with and Without Reinforcement
Authors: Karim Akkouche
Abstract:
Many methods have been developed for characterizing the behavior of bolted joints. However, in the presence of a certain model of stiffeners, no orientation was given in relation to their modeling. To this end, multitude of coarse errors can arise in the reproduction of the propagation of efforts and in representation of the modes of deformations. Considering these particularities, a numerical investigation was carried out in our laboratory. In this paper we will present a comparative study between three types of assemblies. A non-linear 3D modeling was chosen, given that it takes into consideration geometric and material non-linearity, using the Finite Element calculation code ABAQUS. Initially, we evaluated the influence of the presence of each stiffener on the "global" behavior of the assemblies, this by analyzing their Moment-Rotation curves, also by referring to the classification system proposed by NF EN 1993- 1.8 which is based on the resisting moment Mj-Rd and the initial stiffness Sj.int. In a second step, we evaluated the "local" behavior of their components by referring to the stress-strain curves.Keywords: assembly, post-beam, end plate, nonlinearity
Procedia PDF Downloads 74824 Dilation Effect on 3D Passive Earth Pressure Coefficients for Retaining Wall
Authors: Khelifa Tarek, Benmebarek Sadok
Abstract:
The 2D passive earth pressures acting on rigid retaining walls problem has been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line and numerical computation), however, the 3D passive earth pressures problem has received less attention. This paper is concerned with the numerical study of 3D passive earth pressures induced by the translation of a rigid rough retaining wall for associated and non-associated soils. Using the explicit finite difference code FLAC3D, the increase of the passive earth pressures due to the decrease of the wall breadth is investigated. The results given by the present numerical analysis are compared with other investigation. The influence of the angle of dilation on the coefficients is also studied.Keywords: numerical modeling, FLAC3D, retaining wall, passive earth pressures, angle of dilation
Procedia PDF Downloads 324823 Electron Bernstein Wave Heating in the Toroidally Magnetized System
Authors: Johan Buermans, Kristel Crombé, Niek Desmet, Laura Dittrich, Andrei Goriaev, Yurii Kovtun, Daniel López-Rodriguez, Sören Möller, Per Petersson, Maja Verstraeten
Abstract:
The International Thermonuclear Experimental Reactor (ITER) will rely on three sources of external heating to produce and sustain a plasma; Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), and Electron Cyclotron Resonance Heating (ECRH). ECRH is a way to heat the electrons in a plasma by resonant absorption of electromagnetic waves. The energy of the electrons is transferred indirectly to the ions by collisions. The electron cyclotron heating system can be directed to deposit heat in particular regions in the plasma (https://www.iter.org/mach/Heating). Electron Cyclotron Resonance Heating (ECRH) at the fundamental resonance in X-mode is limited by a low cut-off density. Electromagnetic waves cannot propagate in the region between this cut-off and the Upper Hybrid Resonance (UHR) and cannot reach the Electron Cyclotron Resonance (ECR) position. Higher harmonic heating is hence preferred in heating scenarios nowadays to overcome this problem. Additional power deposition mechanisms can occur above this threshold to increase the plasma density. This includes collisional losses in the evanescent region, resonant power coupling at the UHR, tunneling of the X-wave with resonant coupling at the ECR, and conversion to the Electron Bernstein Wave (EBW) with resonant coupling at the ECR. A more profound knowledge of these deposition mechanisms can help determine the optimal plasma production scenarios. Several ECRH experiments are performed on the TOroidally MAgnetized System (TOMAS) to identify the conditions for Electron Bernstein Wave (EBW) heating. Density and temperature profiles are measured with movable Triple Langmuir Probes in the horizontal and vertical directions. Measurements of the forwarded and reflected power allow evaluation of the coupling efficiency. Optical emission spectroscopy and camera images also contribute to plasma characterization. The influence of the injected power, magnetic field, gas pressure, and wave polarization on the different deposition mechanisms is studied, and the contribution of the Electron Bernstein Wave is evaluated. The TOMATOR 1D hydrogen-helium plasma simulator numerically describes the evolution of current less magnetized Radio Frequency plasmas in a tokamak based on Braginskii’s legal continuity and heat balance equations. This code was initially benchmarked with experimental data from TCV to determine the transport coefficients. The code is used to model the plasma parameters and the power deposition profiles. The modeling is compared with the data from the experiments.Keywords: electron Bernstein wave, Langmuir probe, plasma characterization, TOMAS
Procedia PDF Downloads 95822 Software Defined Storage: Object Storage over Hadoop Platform
Authors: Amritesh Srivastava, Gaurav Sharma
Abstract:
The purpose of this project is to develop an open source object storage system that is highly durable, scalable and reliable. There are two representative systems in cloud computing: Google and Amazon. Their storage systems for Google GFS and Amazon S3 provide high reliability, performance and stability. Our proposed system is highly inspired from Amazon S3. We are using Hadoop Distributed File System (HDFS) Java API to implement our system. We propose the architecture of object storage system based on Hadoop. We discuss the requirements of our system, what we expect from our system and what problems we may encounter. We also give detailed design proposal along with the abstract source code to implement it. The final goal of the system is to provide REST based access to our object storage system that exists on top of HDFS.Keywords: Hadoop, HBase, object storage, REST
Procedia PDF Downloads 339