Search results for: sagittal abdominal diameter to height
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3016

Search results for: sagittal abdominal diameter to height

2566 Physical Properties of Alkali Resistant-Glass Fibers in Continuous Fiber Spinning Conditions

Authors: Ji-Sun Lee, Soong-Keun Hyun, Jin-Ho Kim

Abstract:

In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt% zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured, and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

Keywords: glass composition, fiber diameter, continuous filament fiber, continuous spinning, physical properties

Procedia PDF Downloads 294
2565 Numerical Study of Heat Transfer in Square Duct with Turbulators

Authors: M. H. Alhajeri, Hamad M. Alhajeri, A. H. Alenezi

Abstract:

Computational fluid dynamics (CFD) investigation of heat transfer in U-duct with turbulators is presented in this paper. The duct passages used to cool internally the blades in gas turbine. The study is focused in the flow behavior and the Nusselt number (Nu) distributions. The model of the u-duct contains two square legs that are connected by 180* turn. Four turbulators are located in each surface of the leg and distributed in a staggered arrangement. The turbulator height and width are equal to 0.1 of the duct width, and the turbulator height is 0.1 of the distance between the turbulators. The Reynolds number (Re) used in this study is 95000 and the inlet velocity is 10 m/s. It was noticed that, after the flow resettles from the interruptions generated by the first turbulator or the turn, the flow construct two eddies, one large and the other is small after and before the turbulator, respectively. The maximum values of the Nu are found at a distance of approximately one turbulator width w before of the flow reattachment point.

Keywords: computational fluid dynamics, CFD, rib, heat transfer, blade

Procedia PDF Downloads 128
2564 Identification of Candidate Gene for Root Development and Its Association With Plant Architecture and Yield in Cassava

Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi

Abstract:

Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.

Keywords: manihot esculenta crantz, plant architecture, dartseq, snp markers, genome-wide association study

Procedia PDF Downloads 63
2563 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.

Keywords: bubble diameter, heat flux, neural network, training algorithm

Procedia PDF Downloads 424
2562 Relationship Between Dynamic Balance, Jumping Performance and Q-angle in Soccer Players

Authors: Tarik Ozmen

Abstract:

The soccer players need good dynamic balance and jumping performance for dribbling, crossing rival, and to be effective in high balls during soccer game. The quadriceps angle (Q-angle) is used to assess biomechanics of the patellofemoral joint in the musculoskeletal medicine. The Q angle is formed by the intersection of two lines drawing from the anterior superior iliac spine to the centre of the patella and to the midline of the tibia tuberosity. Studies have shown that the Q angle is inversely associated with quadriceps femoris strength. The purpose of this study was to investigate relationship between dynamic balance, jumping performance and Q-angle in soccer players. Thirty male soccer players (mean ± SD: age, 15.23 ± 0.56 years, height, 170 ± 8.37 cm, weight, 61.36 ± 6.04 kg) participated as volunteer in this study. Dynamic balance of the participants were evaluated at directions of anterior (A), posteromedial (PM) and posterolateral (PL) with Star Excursion Balance Test (SEBT). Each participant was instructed to reach as far as with the non-dominant leg in each of the 3 directions while maintaining dominant leg stance. Leg length was used to normalize excursion distances by dividing the distance reached by leg length and then multiplying the result by 100. The jumping performance was evaluated by squat jump using a contact mat. A universal (standard) goniometer was used to measure the Q angle in standing position. The Q angle was not correlated with directions of SEBT (A: p = 0.32, PM: p = 0.06, PL: p = 0.37). The squat jump height was not correlated with Q-angle (p = 0.21). The findings of this study suggest that there are no significant relationships between dynamic balance, jumping performance and Q-angle in soccer players. Further studies should investigate relationship between balance ability, athletic performance and Q-angle with larger sample size in soccer players.

Keywords: balance, jump height, Q angle, soccer

Procedia PDF Downloads 431
2561 2D PbS Nanosheets Synthesis and Their Applications as Field Effect Transistors or Solar Cells

Authors: T. Bielewicz, S. Dogan, C. Klinke

Abstract:

Two-dimensional, solution-processable semiconductor materials are interesting for low-cost electronic applications [1]. We demonstrate the synthesis of lead sulfide nanosheets and how their size, shape and height can be tuned by varying concentrations of pre-cursors, ligands and by varying the reaction temperature. Especially, the charge carrier confinement in the nanosheets’ height adjustable from 2 to 20 nm has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field effect transistor [2]. Recently we also showed that especially thin nanosheets show a high carrier multiplication (CM) efficiency [3] which could make them, through the confinement induced band gap and high photoconductivity, very attractive for application in photovoltaic devices. We are already able to manufacture photovoltaic devices out of single nanosheets which show promising results.

Keywords: physical sciences, chemistry, materials, chemistry, colloids, physics, condensed-matter physics, semiconductors, two-dimensional materials

Procedia PDF Downloads 277
2560 Performance Evaluation of Al Jame’s Roundabout Using SIDRA

Authors: D. Muley, H. S. Al-Mandhari

Abstract:

This paper evaluates the performance of a multi-lane four-legged modern roundabout operating in Muscat using SIDRA model. The performance measures include Degree of Saturation (DOS), average delay, and queue lengths. The geometric and traffic data were used for model preparation. Gap acceptance parameters, critical gap, and follow-up headway were used for calibration of SIDRA model. The results from the analysis showed that currently the roundabout is experiencing delays up to 610 seconds with DOS 1.67 during peak hour. Further, sensitivity analysis for general and roundabout parameters was performed, amongst lane width, cruise speed, inscribed diameter, entry radius, and entry angle showed that inscribed diameter is the most crucial factor affecting delay and DOS. Upgradation of the roundabout to the fully signalized junction was found as the suitable solution which will serve for future years with LOS C for design year having DOS of 0.9 with average control delay of 51.9 seconds per vehicle.

Keywords: performance analysis, roundabout, sensitivity analysis, SIDRA

Procedia PDF Downloads 359
2559 Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression

Authors: Keisuke Takahata, Hiroshi Suetsugu

Abstract:

Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation.

Keywords: digital terrain model, satellite LiDAR, gaussian processes, uncertainty quantification

Procedia PDF Downloads 151
2558 Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles

Authors: Amir Mahmoudi

Abstract:

In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.

Keywords: Portland cement, composite, nanoparticles, compressive strength

Procedia PDF Downloads 414
2557 Fixed-Bed Column Studies of Green Malachite Removal by Use of Alginate-Encapsulated Aluminium Pillared Clay

Authors: Lazhar mouloud, Chemat Zoubida, Ouhoumna Faiza

Abstract:

The main objective of this study, concerns the modeling of breakthrough curves obtained in the adsorption column of malachite green into alginate-encapsulated aluminium pillared clay in fixed bed according to various operating parameters such as the initial concentration, the feed rate and the height fixed bed, applying mathematical models namely: the model of Bohart and Adams, Wolborska, Bed Depth Service Time, Clark and Yoon-Nelson. These models allow us to express the different parameters controlling the performance of the dynamic adsorption system. The results have shown that all models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to the flow rate, the inlet dye concentration and the height of fixed bed.

Keywords: adsorption column, malachite green, pillared clays, alginate, modeling, mathematic models, encapsulation.

Procedia PDF Downloads 484
2556 Design and Performance of a Large Diameter Shaft in Old Alluvium

Authors: Tamilmani Thiruvengadam, Ramasthanan Arulampalam

Abstract:

This project comprises laying approximately 1.8km of 400mm, 1200mm and 2400mm diameter sewer pipes using pipe jacking machines along Mugliston Park, Buangkok Drive, and Buangkok Link. The works include an estimated 14 circular shafts with depth ranging from 10.0 meters to 29.0 meters. Cast in-situ circular shaft will be used for the temporary shaft excavation. The geology is predominantly Backfill and old alluvium with weak material encountered in between. Where there is a very soft clay, F1 material or weak soil is expected, ground improvement will be carried out outside of the shaft followed by cast in-situ concrete ring wall within the improved soil zone. This paper presents the design methodology, analysis and results of temporary shafts for micro TBM launching and constructing permanent manholes. There is also a comparison of instrumentation readings with the analysis predicted values.

Keywords: circular shaft, ground improvement, old alluvium, temporary shaft

Procedia PDF Downloads 268
2555 The Long-Term Effects of Immediate Implantation, Early Implantation and Delayed Implantation at Aesthetics Area

Authors: Xing Wang, Lin Feng, Xuan Zou, Hongchen liu

Abstract:

Immediate Implantation after tooth extraction is considered to be the ideal way to retain the alveolar bone, but some scholars believe the aesthetic effect in the Early Implantation case are more reliable. In this study, 89 patients were added to this retrospective study up to 5 years. Assessment indicators was including the survival of the implant (peri-implant infection, implant loosening, shedding, crowns and occlusal), aesthetics (color and fullness gums, papilla height, probing depth, X-ray alveolar crest height, the patient's own aesthetic satisfaction, doctors aesthetics score), repair defects around the implant (peri-implant bone changes in height and thickness, whether the use of autologous bone graft, whether to use absorption/repair manual nonabsorbable material), treatment time, cost and the use of antibiotics.The results demonstrated that there is no significant difference in long-term success rate of immediate implantation, early implantation and delayed implantation (p> 0.05). But the results indicated immediate implantation group could get get better aesthetic results after two years (p< 0.05), but may increase the risk of complications and failures (p< 0.05). High-risk indicators include gingival recession, labial bone wall damage, thin gingival biotypes, planting position and occlusal restoration bad and so on. No matter which type of implanting methods was selected, the extraction methods and bone defect amplification techniques are observed as a significant factors on aesthetic effect (p< 0.05).

Keywords: immediate implantation, long-term effects, aesthetics area, dental implants

Procedia PDF Downloads 332
2554 Association of Maternal Diet Quality Indices and Dietary Patterns during Lactation and the Growth of Exclusive Breastfed Infant

Authors: Leila Azadbakht, Maedeh Moradi, Mohammad Reza Merasi, Farzaneh Jahangir

Abstract:

Maternal dietary intake during lactation might affect the growth rate of an exclusive breastfed infant. The present study was conducted to evaluate the effect of maternal dietary patterns and quality during lactation on the growth of the exclusive breastfed infant. Methods: 484 healthy lactating mothers with their infant were enrolled in this study. Only exclusive breastfed infants were included in this study which was conducted in Iran. Dietary intake of lactating mothers was assessed using a validated and reliable semi-quantitative food frequency questionnaire. Diet quality indices such as alternative Healthy eating index (HEI), Dietary energy density (DED), and adherence to Mediterranean dietary pattern score, Nordic and dietary approaches to stop hypertension (DASH) eating pattern were created. Anthropometric features of infant (weight, height, and head circumference) were recorded at birth, two and four months. Results: Weight, length, weight for height and head circumference of infants at two months and four months age were mostly in the normal range among those that mothers adhered more to the HEI in lactation period (normal weight: 61%; normal height: 59%). The prevalence of stunting at four months of age among those whose mothers adhered more to the HEI was 31% lower than those with the least adherence to HEI. Mothers in the top tertiles of HEI score had the lowest frequency of having underweight infants (18% vs. 33%; P=0.03). Odds ratio of being overweight or obese at four months age was the lowest among those infants whose mothers adhered more to the HEI (OR: 0.67 vs 0.91; Ptrend=0.03). However, there was not any significant association between adherence of mothers to Mediterranean diet as well as DASH diet and Nordic eating pattern and the growth of infants (none of weight, height or head circumference). Infant weight, length, weight for height and head circumference at two months and four months did not show significant differences among different tertile categories of mothers’ DED. Conclusions: Higher diet quality indices and more adherence of lactating mother to HEI (as an indicator of diet quality) may be associated with better growth indices of the breastfed infant. However, it seems that DED of the lactating mother does not affect the growth of the breastfed infant. Adherence to the different dietary patterns such as Mediterranean, DASH or Nordic among mothers had no different effect on the growth indices of the infants. However, higher diet quality indices and more adherence of lactating mother to HEI may be associated with better growth indices of the breastfed infant. Breastfeeding is a complete way that is not affected much by the dietary patterns of the mother. However, better diet quality might be associated with better growth.

Keywords: breastfeeding, growth, infant, maternal diet

Procedia PDF Downloads 179
2553 Effects of Injectable Thermosensitive Hydrogel Containing Chitosan as a Barrier for Prevention of Post-operative Peritoneal Adhesion in Rats

Authors: Sara Javanmardi, Sepehr Aziziz, Baharak Divband, Masoumeh Firouzamandi

Abstract:

Post-operative adhesions are the most common cause of intestinal obstruction, female infertility and chronic abdominal pain. We developed a novel approach for preventing post-operative peritoneal adhesions using a biodegradable and thermosensitive curcumin hydrogel in rats. Thirteen male Sprague-Dawley rats were assigned randomly into five groups of six animals each: In SHAM group, the cecum was exteriorized, gently manipulated and sent back into the abdomen. In CONTROL group, the surgical abrasion was performed with no further treatment. In Hydrogel group, surgical abrasion was performed with local application of blank hydrogel (1 mL). In Curcumin group, surgical abrasion was performed with local application of curcumin (1 mL). In CUR/HGEL group, surgical abrasion was performed with local application of curcumin hydrogel (1 mL). On day 10, adhesions were assessed using a standardized scale (Evans model), and samples were collected for the Real-time PCR. Real-time PCR was performed to determine mRNA levels of VCAM-1, ICAM-1 and GAPDH. The macroscopic adhesion intensity showed statistically significant differences between the CUR/HGEL and other groups (P=0.0005). The findings of the present study revealed there were statistically significant differences between the groups regarding adhesion band length and numbers (P<0.0001). The protein and mRNA expression of VCAM-1 and ICAM-1 in secal tissues were significantly down regulated due to curcumin-hydrogel application in CUR/HGEL compared to other groups (p<0.05). The thermosensitive hydrogel could reduce the severity and even prevent formation of intra-abdominal adhesion. Curcumin hydrogel could serve as a potential barrier agent to prevent post-operative peritoneal adhesion in rats.

Keywords: peritoneal adhesion, hydrogel, curcumijn, ICAM-1, VCAM-1

Procedia PDF Downloads 63
2552 Effects of Alpha Lipoic Acid on Limb Lengths in Neonatal Rats Exposed to Maternal Tobacco Smoke

Authors: Ramazan F. Akkoc, Elif Erdem, Nalan Kaya, Gonca Ozan, D. Özlem Dabak, Enver Ozan

Abstract:

Maternal tobacco smoke exposure is known to cause growth retardation in the neonatal skeletal system. Alpha lipoic acid, a natural antioxidant found in some foods, limits the activities of osteoclasts and supports the osteoblast's bone formation mechanism. In this study, it was aimed to investigate the effects of alpha lipoic acid (ALA) on the height, long bones and tail lengths of pups exposed to maternal tobacco smoke. The rats were divided into four groups: 1) control group, 2) tobacco smoke group, 3) tobacco smoke + ALA group, and 4) ALA group. Rats in the group 2 (tobacco smoke), group 3 (tobacco smoke + ALA) were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group 3 (tobacco smoke + ALA). Only alpha lipoic acid was administered to the rats in the group 4. On day 21 postpartum, the height and tail lengths of the pups in all groups were measured, and the length of the extremity long bones was measured after decapitation. All morphometric measurements performed in group 2 (tobacco smoke) showed a significant decrease compared to group 1 (control), while all measurements in group 3 (tobacco smoke + ALA) showed a significant increase compared to group 2 (tobacco smoke). It has been shown that ALA has a protective effect against the regression of height, long bones and tail lengths of pups exposed to maternal tobacco smoke.

Keywords: alpha lipoic acid, bone, morphometry, rat, tobacco smoke

Procedia PDF Downloads 340
2551 Effect of Baking Temperature on the Mechanical Properties of Reinforced Clayey Soil

Authors: Gul Muhammad, Amanullah Marri, Asif Abbas

Abstract:

Thermal treatment changes the physical and mechanical properties of clayey soils. Thermally treated soils have been used since ancient times for making trails for access and bricks for residence. In this study, it has been focused to observe and analyze the effect of baking (burning) temperature on the mechanical properties of clayey soils usually used for the construction of adobe houses in the rural areas of many of the developing countries. In the first stage of experimental work, a series of tests on clayey soil moulds (100 mm height and 50 mm diameter in size) added different percentages of lime and wheat straw (typically 2%, 4%, 6%, 8%, and 10%) were conducted. In the second stage; samples were made of clayey soils and were subjected to six level of temperatures i.e., 25, 100, 200, 300, 400, and 500⁰C. In the third stage, the moulds of clayey soil were submerged in water prior to testing in order to investigate the flood resilience of the moulds prepared with and without the addition of lime and wheat straw. The experimental results suggest that samples with 6% of lime content and on 2% of wheat straw contents have shown the maximum value of compressive strength. The effect of baking temperature on the clayey soils has shown that maximum UCS is obtained at 200⁰C. The results also suggest reinforcement with 2% wheat straw, give 70.8% increase in the compressive strength compared to soil only, whereas the flooding resilience can be better resist by adding 6% lime and 2% wheat straw.

Keywords: baked temperature, submersion, lime, uniaxial, wheat straw

Procedia PDF Downloads 251
2550 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles

Authors: Trung Le Thanh

Abstract:

Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.

Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance

Procedia PDF Downloads 43
2549 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis

Authors: Kunya Bowornchockchai

Abstract:

The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0)  without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt  is the time series data at time t, respectively.

Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate

Procedia PDF Downloads 228
2548 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis

Authors: Vinti Davar

Abstract:

Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16.Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 year and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of non communicable diseases due to obesity and high fat percentage.

Keywords: anthropometry, bioelectrical impedance, body fat percentage, obesity

Procedia PDF Downloads 361
2547 Date Palm Wastes Turning into Biochars for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations

Authors: Salah Jellali, Nusiba Suliman, Yassine Charabi, Jamal Al-Sabahi, Ahmed Al Raeesi, Malik Al-Wardy, Mejdi Jeguirim

Abstract:

Huge amounts of agricultural biomasses are worldwide produced. At the same time, large quantities of phosphorus are annually discharged into water bodies with possible serious effects onto the environment quality. The main objective of this work is to turn a local Omani biomass (date palm fronds wastes: DPFW) into an effective material for phosphorus recovery from aqueous and the reuse of this P-loaded material in agriculture as ecofriendly amendment. For this aim, the raw DPFW were firstly impregnated with 1 M salt separated solutions of CaCl₂, MgCl₂, FeCl₃, AlCl₃, and a mixture of MgCl₂/AlCl₃ for 24 h, and then pyrolyzed under N2 flow at 500 °C for 2 hours by using an adapted tubular furnace (Carbolite, UK). The synthetized biochars were deeply characterized through specific analyses concerning their morphology, structure, texture, and surface chemistry. These analyses included the use of a scanning electron microscope (SEM) coupled with an energy-dispersive X-Ray spectrometer (EDS), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), sorption micrometrics, and X-ray Fluorescence (XRF) apparatus. Then, their efficiency in recovering phosphorus was investigated in batch mode for various contact times (1 min to 3 h), aqueous pH values (from 3 to 11), initial phosphorus concentrations (10-100 mg/L), presence of anions (nitrates, sulfates, and chlorides). In a second step, dynamic assays, by using laboratory columns (height of 30 cm and diameter of 3 cm), were performed in order to investigate the recovery of phosphorus by the modified biochar with a mixture of Mg/Al. The effect of the initial P concentration (25-100 mg/L), the bed depth height (3 to 8 g), and the flow rate (10-30 mL/min) was assessed. Experimental results showed that the biochars physico-chemical properties were very dependent on the type of the used modifying salt. The main affected parameters concerned the specific surface area, microporosity area, and the surface chemistry (pH of zero-point charge and available functional groups). These characteristics have significantly affected the phosphorus recovery efficiency from aqueous solutions. Indeed, the P removal efficiency in batch mode varies from about 5 mg/g for the Fe-modified biochar to more than 13 mg/g for the biochar functionalized with Mg/Al layered double hydroxides. Moreover, the P recovery seems to be a time dependent process and significantly affected by the pH of the aqueous media and the presence of foreign anions due to competition phenomenon. The laboratory column study of phosphorus recovery by the biochar functionalized with Mg/Al layered double hydroxides showed that this process is affected by the used phosphorus concentration, the flow rate, and especially the column bed depth height. Indeed, the phosphorus recovered amount increased from about 4.9 to more than 9.3 mg/g used biochar mass of 3 and 8 g, respectively. This work proved that salt-modified palm fronds-derived biochars could be considered as attractive and promising materials for phosphorus recovery from aqueous solutions even under dynamic conditions. The valorization of these P-loaded-modified biochars as eco-friendly amendment for agricultural soils is necessary will promote sustainability and circular economy concepts in the management of both liquid and solid wastes.

Keywords: date palm wastes, Mg/Al double-layered hydroxides functionalized biochars, phosphorus, recovery, sustainability, circular economy

Procedia PDF Downloads 55
2546 An Alternative Rectangular Tunnels to Conventional Twin Circular Bored Tunnels in Weak Ground Conditions

Authors: Alex Atanaw Alebachew

Abstract:

The outcomes of a numerical research study conducted using the PLAXIS software to analyze surface settlements and moments generated in tunnel linings. The investigation focuses on both circular and rectangular twin tunnels. The study suggests that rectangular tunnels, although considered unconventional in modern tunneling practices, may be a viable option for shallow-depth tunneling in weak ground. The recommendation for engineers in the tunneling industry is to consider the use of rectangular tunnel boring machines (TBMs) based on the findings of this analysis. The research emphasizes the importance of evaluating various tunneling methods to optimize performance and address specific challenges in different ground conditions. These findings provide valuable insights into the behavior of rectangular tunnels compared to circular tunnels, emphasizing factors such as burial depth, relative positioning, tunnel size, and critical distance that influence surface settlements and bending moments. This research explores the feasibility of utilizing rectangular Tunnel Boring Machines (TBMs) as an alternative to conventional circular TBMs. The research findings indicate that rectangular tunnels exhibit slightly lower settlement than circular tunnels at shallow depths, especially in a narrower range directly above the twin tunnels. This difference could be attributed to maintaining a consistent tunnel-lining thickness across all depths. In deeper tunnel scenarios, circular tunnels experience less settlement compared to rectangular tunnels. Additionally, parallel rectangular tunnels settle more gradually than piggyback configurations, while piggyback tunnels show increased moments in the tunnel built second at the same level. Both settlement and moment coefficients increase with the diameter of twin tunnels, irrespective of their shape. The critical distance for both circular and rectangular tunnels is around 2.5 times the tunnel diameter, and distances closer than this result in a notable increase in moments. Rectangular tunnels spaced closer than 5 times the diameter led to higher settlement, and circular tunnels spaced closer than 2.5 to 3 times the diameter experience increased settlement as well.

Keywords: alternative, rectangular, tunnel, twin bored circular, weak ground

Procedia PDF Downloads 33
2545 Optimum Design of Piled-Raft Systems

Authors: Alaa Chasib Ghaleb, Muntadher M. Abbood

Abstract:

This paper presents a study of the problem of the optimum design of piled-raft foundation systems. The study has been carried out using a hypothetic problem and soil investigations of six sites locations in Basrah city to evaluate the adequacy of using the piled-raft foundation concept. Three dimensional finite element analysis method has been used, to perform the structural analysis. The problem is optimized using Hooke and Jeeves method with the total weight of the foundation as objective function and each of raft thickness, piles length, number of piles and piles diameter as design variables. It is found that the total and differential settlement decreases with increasing the raft thickness, the number of piles, the piles length, and the piles diameter. Finally parametric study for load values, load type and raft dimensions have been studied and the results have been discussed.

Keywords: Hooke and Jeeves, optimum design, piled-raft, foundations

Procedia PDF Downloads 208
2544 Effect of Supplemental Bacterial Phytase at Different Dietary Levels of Phosphorus on Tibial Bone Characteristics and Body Weight Gain in Broilers

Authors: Saqib Saleem Abdullah, Saima Masood, Hafsa Zaneb, Shela Gul Bokhari, Muti Ur Rehman, Jamil Akbar

Abstract:

A 5- weeks feeding trial was carried out to determine the effectiveness of Bacterial Phytase (Phyzyme®) in broilers, at different dietary levels of Phosphorous. 140 d-old broilers (Hubbard) were randomly divided into 4 groups (n=4). Birds were fed corn-based basal diet or the same diet supplemented with 3 different levels of non Phytate Phosphorous (NPP) (0.45 %, 0.30 % and 0.15 %). Furthermore, the diets were supplemented with bacterial Phytase. Birds were fed ad libitum and kept under thermo neutral conditions. The parameters studied were; body weight gain (BWG), tibial bone characteristics (TBC), serum Calcium (Ca), Phosphorus (P) and Alkaline Phosphatase (AP) levels and tibia ash percentage (TAP). BWG of the broilers was calculated at weekly interval and remaining parameters were calculated after slaughtering the birds at 35thday. Results suggested that Phytase supplementation at 0.30% NPP (Non Phytate Phosphorus + Bacterial Phytase) increased (P < 0.05) the BWG, bone length, bone weight, tibiotarsal index, medullary canal diameter and diaphysis diameter however, rubosticity index was reduced to minimum (P < 0.05) at this dietary level of phosphorous when compared with other groups. Maximum (P < 0.05) rubosticity index was observed in control group with 0% Phytase. Furthermore, Phytase addition at 0.30 % NPP also improved (P < 0.05) Ca, P and AP levels in the blood. Phytase supplementation at lower phosphorus level (0.30%NPP) improved BWG and TBC including bone density and bone quality in broilers hence it can be concluded that addition of Phytase at 0.30% NPP may prove beneficial for bone and overall performance in broilers.

Keywords: diaphysis diameter, phytase, rubosticity index, tibia

Procedia PDF Downloads 371
2543 The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters

Authors: Ayat Adnan Atwah, Muhammad A. Khan

Abstract:

Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials.

Keywords: 3D printing, self-cleaning fabric, microscopic features, printing parameters, fabrication

Procedia PDF Downloads 56
2542 The Development of GPS Buoy for Ocean Surface Monitoring: Initial Results

Authors: Anuar Mohd Salleh, Mohd Effendi Daud

Abstract:

This study presents a kinematic positioning approach which is use the GPS buoy for precise ocean surface monitoring. A GPS buoy data from two experiments have been processed using a precise, medium-range differential kinematic technique. In each case the data were collected for more than 24 hours at nearby coastal site at a high rate (1 Hz), along with measurements from neighboring tidal stations, to verify the estimated sea surface heights. Kinematic coordinates of GPS buoy were estimated using the epoch-wise pre-elimination and the backward substitution algorithm. Test results show the centimeter level accuracy in sea surface height determination can be successfully achieved using proposed technique. The centimeter level agreement between two methods also suggests the possibility of using this inexpensive and more flexible GPS buoy equipment to enhance (or even replace) the current use of tidal gauge stations.

Keywords: global positioning system, kinematic GPS, sea surface height, GPS buoy, tide gauge

Procedia PDF Downloads 521
2541 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.

Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation

Procedia PDF Downloads 487
2540 Effect of Welding Parameters on Dilution and Bead Height for Variable Plate Thickness in Submerged Arc Welding

Authors: Harish Kumar Arya, Kulwant Singh, R. K Saxena, Deepti Jaiswal

Abstract:

The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on bead geometry and dilution. The penetration reduces with increase in plate thickness due to heat loss in thickness direction, while bead width and reinforcement increases for thicker plate due to faster cooling.

Keywords: submerged arc welding, plate thickness, bead geometry, cooling rate

Procedia PDF Downloads 267
2539 Temporal Change in Bonding Strength and Antimicrobial Effect of a Zirconia after Nonthermal Atmospheric Pressure Plasma Treatment

Authors: Chan Park, Sang-Won Park, Kwi-Dug Yun, Hyun-Pil Lim

Abstract:

Purpose: Plasma treatment under various conditions has been studied to increase the bonding strength and surface sterilization of dental ceramic materials. We assessed the evolution of the shear bond strength (SBS) and antimicrobial effect of nonthermal atmospheric pressure plasma (NTAPP) treatment over time. Methods: Presintered zirconia specimens were manufactured as discs (diameter: 15 mm, height: 2 mm) after final sintering. The specimens then received a 30-min treatment with argon gas (Ar², 99.999%; 10 L/min) using an NTAPP device. Five post-treatment intervals were evaluated: control (no treatment), P0 (within 1 h), P1 (24 h), P2 (48 h), and P3 (72 h). This study investigated the surface characteristics, SBS of two different resin cement (RelyXTM U200 self-adhesive resin cement, Panavia F2.0 methacryloyloxydecyl dihydrogen phosphate (MDP)-based resin cement), and Streptococcus mutans biofilm formation. Results: The SBS of RelyXTM U200 increased significantly (p < 0.05) within 2 days following plasma treatment (P0, P1, P2). For Panavia F 2.0, a significant decrease (p < 0.05) was detected only in the group that had undergone cementation immediately after plasma treatment (P0). S. mutans adhesion decreased significantly (p < 0.05) within 2 days of plasma treatment (P0, P1, P2) compared to the control group. The P0 group displayed a lower biofilm thickness than the P1 and P2 groups (p < 0.05). Conclusions: After NTAPP treatment of zirconia, the effects on bonding strength and antimicrobial growth persist for a limited duration. The effect of NTAPP treatment on bonding strength depends on the resin cement.

Keywords: NTAPP, SBS, antimicrobial effect, zirconia

Procedia PDF Downloads 219
2538 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk

Authors: Masoud Nasiri Sarvi, Yunhua Luo

Abstract:

Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.

Keywords: bone mineral density, hip fracture risk, impact force, sideways falls

Procedia PDF Downloads 513
2537 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique

Authors: Bashar Tarawneh, Yasser Hakam

Abstract:

Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.

Keywords: compaction, RIC, ground improvement, CPT

Procedia PDF Downloads 345