Search results for: DArtseq
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: DArtseq

3 Bean in Turkey: Characterization, Inter Gene Pool Hybridization Events, Breeding, Utilizations

Authors: Faheem Shahzad Baloch, Muhammad Azhar Nadeem, Muhammad Amjad Nawaz, Ephrem Habyarimana, Gonul Comertpay, Tolga Karakoy, Rustu Hatipoglu, Mehmet Zahit Yeken, Vahdettin Ciftci

Abstract:

Turkey is considered a bridge between Europe, Asia, and Africa and possibly played an important role in the distribution of many crops including common bean. Hundreds of common bean landraces can be found in Turkey, particularly in farmers’ fields, and they consistently contribute to the overall production. To investigate the existing genetic diversity and hybridization events between the Andean and Mesoamerican gene pools in the Turkish common bean, 188 common bean accessions (182 landraces and 6 modern cultivars as controls) were collected from 19 different Turkish geographic regions. These accessions were characterized using phenotypic data (growth habit and seed weight), geographic provenance, 12557 high-quality whole-genome DArTseq markers, and 3767 novel DArTseq loci were also identified. The clustering algorithms resolved the Turkish common bean landrace germplasm into the two recognized gene pools, the Mesoamerican and Andean gene pools. Hybridization events were observed in both gene pools (14.36% of the accessions) but mostly in the Mesoamerican (7.97% of the accessions), and was low relative to previous European studies. The lower level of hybridization witnessed the existence of Turkish common bean germplasm in its original form as compared to Europe. Mesoamerican gene pool reflected a higher level of diversity, while the Andean gene pool was predominant (56.91% of the accessions), but genetically less diverse and phenotypically more pure, reflecting farmers greater preference for the Andean gene pool. We also found some genetically distinct landraces and overall, a meaningful level of genetic variability which can be used by the scientific community in breeding efforts to develop superior common bean strains.

Keywords: bean germplasm, DArTseq markers, genotyping by sequencing, Turkey, whole genome diversity

Procedia PDF Downloads 206
2 Cassava Plant Architecture: Insights from Genome-Wide Association Studies

Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi

Abstract:

Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.

Keywords: Manihot esculenta Crantz, plant architecture, DArtseq, SNP markers, genome-wide association study

Procedia PDF Downloads 36
1 Identification of Candidate Gene for Root Development and Its Association With Plant Architecture and Yield in Cassava

Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi

Abstract:

Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.

Keywords: manihot esculenta crantz, plant architecture, dartseq, snp markers, genome-wide association study

Procedia PDF Downloads 49