Search results for: semi-permeable dialysis membrane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1175

Search results for: semi-permeable dialysis membrane

815 Continuous Production of Prebiotic Pectic Oligosaccharides from Sugar Beet Pulp in a Continuous Cross Flow Membrane Bioreactor

Authors: Neha Babbar, S. Van Roy, W. Dejonghe, S. Sforza, K. Elst

Abstract:

Pectic oligosaccharides (a class of prebiotics) are non-digestible carbohydrates which benefits the host by stimulating the growth of healthy gut micro flora. Production of prebiotic pectic oligosaccharides (POS) from pectin rich agricultural residues involves a cutting of long chain polymer of pectin to oligomers of pectin while avoiding the formation of monosaccharides. The objective of the present study is to develop a two-step continuous biocatalytic membrane reactor (MER) for the continuous production of POS (from sugar beet pulp) in which conversion is combined with separation. Optimization of the ratio of POS/monosaccharides, stability and productivities of the process was done by testing various residence times (RT) in the reactor vessel with diluted (10 RT, 20 RT, and 30 RT) and undiluted (30 RT, 40 RT and 60 RT) substrate. The results show that the most stable processes (steady state) were 20 RT and 30 RT for diluted substrate and 40 RT and 60 RT for undiluted substrate. The highest volumetric and specific productivities of 20 g/L/h and 11 g/gE/h; 17 g/l/h and 9 g/gE/h were respectively obtained with 20 RT (diluted substrate) and 40 RT (undiluted substrate). Under these conditions, the permeates of the reactor test with 20 RT (diluted substrate) consisted of 80 % POS fractions while that of 40 RT (undiluted substrate) resulted in 70% POS fractions. A two-step continuous biocatalytic MER for the continuous POS production looks very promising for the continuous production of tailor made POS. Although both the processes i.e 20 RT (diluted substrate) and 40 RT (undiluted substrate) gave the best results, but for an Industrial application it is preferable to use an undiluted substrate.

Keywords: pectic oligosaccharides, membrane reactor, residence time, specific productivity, volumetric productivity

Procedia PDF Downloads 440
814 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application

Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang

Abstract:

The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.

Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process

Procedia PDF Downloads 206
813 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

Authors: Aymen Laadhari

Abstract:

We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.

Keywords: finite element method, level set, Newton, membrane

Procedia PDF Downloads 330
812 Apoptotic Induction Ability of Harmalol and Its Binding: Biochemical and Biophysical Perspectives

Authors: Kakali Bhadra

Abstract:

Harmalol administration caused remarkable reduction in proliferation of HepG2 cells with GI50 of 14.2 mM, without showing much cytotoxicity in embryonic liver cell line, WRL-68. Data from circular dichroism and differential scanning calorimetric analysis of harmalol-CT DNA complex shows conformational changes with prominent CD perturbation and stabilization of CT DNA by 8 oC. Binding constant and stoichiometry was also calculated using the above biophysical techniques. Further, dose dependent apoptotic induction ability of harmalol was studied in HepG2 cells using different biochemical assays. Generation of ROS, DNA damage, changes in cellular external and ultramorphology, alteration of membrane, formation of comet tail, decreased mitochondrial membrane potential and a significant increase in Sub Go/G1 population made the cancer cell, HepG2, prone to apoptosis. Up regulation of p53 and caspase 3 further indicated the apoptotic role of harmalol.

Keywords: apoptosis, beta carboline alkaloid, comet assay, cytotoxicity, ROS

Procedia PDF Downloads 209
811 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 124
810 Awareness and Willingness of Signing 'Consent Form in Palliative Care' in Elderly Patients with End Stage Renal Disease

Authors: Hsueh Ping Peng

Abstract:

End-stage renal disease most commonly occurs in the elderly population. Elderly people are approaching the end of their lives, and when facing major life-threatening situations, apart from aggressive medical treatment, they can also choose treatment methods such as hospice care to improve their quality of life. The purpose of this study was to investigate factors associated with the awareness and willingness to sign hospice and palliative care consent forms in elderly with end-stage renal disease. This study used both quantitative, cross-sectional study designs. In the quantitative section, 110 elderly patients (aged 65 or above) with end-stage renal disease receiving conventional hemodialysis were recruited as study participants from a medical center in Taipei City. Data were collected using structured questionnaires. Study tools included basic demographic data, questionnaires on the awareness and perception of hospice and palliative care, etc. After collecting the data, data analysis was conducted using SPSS 20.0 statistical software, including descriptive statistics, chi-square test, logistic regression, and other inferential statistics. The results showed that the average age of participants was 71.6 years old, more males than females, average years of dialysis was 6.1 years and most subjects rated their self-perceived health status as fair. Results of the study are summarized as follows: Elderly people with end-stage renal disease did not have sufficient knowledge and awareness about hospice and palliative care. Influencing factors included level of education, marital status, years of dialysis and age, etc. Demographic factors influencing the signing of consent forms included gender, marital status, and age, which all showed significant impacts. Factors taken into consideration when signing consent forms included awareness of hospice care, understanding the relevant definitions of hospice care, and understanding that consent may be modified or cancelled at any time; it was predicted that people who knew more about ways to receive hospice care or more related definitions were more willing to sign the consent forms. In the qualitative study section, 10 participants who signed the consent form, five male, and 5 female, between the ages of 65-90, have completed the semi-structured interviews. Analysis of the interviews revealed six themes: (1) passing away peacefully, (2) autonomy on arrangements of life and death, (3) unwillingness to increase family and social burden, (4) friends and relatives’ experience influencing the decision to give consent, (5) sharing information to facilitate the giving of consent, (6) facing each day with ease, to reflect the experience and factors of consideration for elderly with end-stage renal disease when signing consent forms. The results of this study provides the awareness, thoughts and feelings of elderly with end-stage renal disease on signing consent forms, and serve as a future reference for the dialysis unit to enhance the promotion of hospice and palliative care and related caregiving measures, thereby improving the quality of life and care for elderly people with end-stage renal disease.

Keywords: end-stage renal disease, hemodialysis, hospice and palliative care, awareness, willingness

Procedia PDF Downloads 168
809 Recent Development of Materials for Proton Exchange Membrane Fuel Cell (PEMFC)

Authors: Mohammed Jourdani, Hamid Mounir, Abdellatif El Marjani

Abstract:

Proton exchange membrane fuel cells (PEMFCs) have been developed as a promising power source for transportation and stationary applications, and power devices for computers and mobile telephones. This paper discusses and summarizes the latest developments of materials and remaining challenges of PEMFC. The different contributions to the material of all components and the efficiencies are analyzed. Many technical advances are introduced to increase the PEMFC fuel cell efficiency and life time for transportation, stationary and portable utilization. By the last years the total cost of this system is decreasing. However, the remaining challenges that need to be overcome mean that it will be several years before full commercialization can take place.

Keywords: PEMFC fuel cell, materials, recent development, efficiency, life time, commercialization possibility

Procedia PDF Downloads 311
808 Fresh Amnion Membrane Grafting for the Regeneration of Skin in Full Thickness Burn in Newborn - Case Report

Authors: Priyanka Yadav, Umesh Bnasal, Yashvinder Kumar

Abstract:

The placenta is an important structure that provides oxygen and nutrients to the growing fetus in utero. It is usually thrown away after birth, but it has a therapeutic role in the regeneration of tissue. It is covered by the amniotic membrane, which can be easily separated into the amnion layer and the chorion layer—the amnion layer act as a biofilm for the healing of burn wound and non-healing ulcers. The freshly collected membrane has stem cells, cytokines, growth factors, and anti-inflammatory properties, which act as a biofilm for the healing of wounds. It functions as a barrier and prevents heat and water loss and also protects from bacterial contamination, thus supporting the healing process. The application of Amnion membranes has been successfully used for wound and reconstructive purposes for decades. It is a very cheap and easy process and has shown superior results to allograft and xenograft. However, there are very few case reports of amnion membrane grafting in newborns; we intend to highlight its therapeutic importance in burn injuries in newborns. We present a case of 9 days old male neonate who presented to the neonatal unit of Maulana Azad Medical College with a complaint of fluid-filled blisters and burns wound on the body for six days. He was born outside the hospital at 38 weeks of gestation to a 24-year-old primigravida mother by vaginal delivery. The presentation was cephalic and the amniotic fluid was clear. His birth weight was 2800 gm and APGAR scores were 7 and 8 at 1 and 5 minutes, respectively. His anthropometry was appropriate for gestational age. He developed respiratory distress after birth requiring oxygen support by nasal prongs for three days. On the day of life three, he developed blisters on his body, starting from than face then over the back and perineal region. At a presentation on the day of life nine, he had blisters and necrotic wound on the right side of the face, back, right shoulder and genitalia, affecting 60% of body surface area with full-thickness loss of skin. He was started on intravenous antibiotics and fluid therapy. Pus culture grew Pseudomonas aeuroginosa, for which culture-specific antibiotics were started. Plastic surgery reference was taken and regular wound dressing was done with antiseptics. He had a storming course during the hospital stay. On the day of life 35 when the baby was hemodynamically stable, amnion membrane grafting was done on the wound site; for the grafting, fresh amnion membrane was removed under sterile conditions from the placenta obtained by caesarean section. It was then transported to the plastic surgery unit in half an hour in a sterile fluid where the graft was applied over the infant’s wound. The amnion membrane grafting was done twice in two weeks for covering the whole wound area. After successful uptake of amnion membrane, skin from the thigh region was autografted over the whole wound area by Meek technique in a single setting. The uptake of autograft was excellent and most of the areas were healed. In some areas, there was patchy regeneration of skin so dressing was continued. The infant was discharged after three months of hospital stay and was later followed up in the plastic surgery unit of the hospital.

Keywords: amnion membrane grafting, autograft, meek technique, newborn, regeneration of skin

Procedia PDF Downloads 161
807 Hospital Wastewater Treatment by Ultrafiltration Membrane System

Authors: Selin Top, Raul Marcos, M. Sinan Bilgili

Abstract:

Although there have been several studies related to collection, temporary storage, handling and disposal of solid wastes generated by hospitals, there are only a few studies related to liquid wastes generated by hospitals or hospital wastewaters. There is an important amount of water consumptions in hospitals. While minimum domestic water consumption per person is 100 L/day, water consumption per bed in hospitals is generally ranged between 400-1200 L. This high amount of consumption causes high amount of wastewater. The quantity of wastewater produced in a hospital depends on different factors: bed numbers, hospital age, accessibility to water, general services present inside the structure (kitchen, laundry, laboratory, diagnosis, radiology, and air conditioning), number and type of wards and units, institution management policies and awareness in managing the structure in safeguarding the environment, climate and cultural and geographic factors. In our country, characterization of hospital wastewaters conducted by classical parameters in a very few studies. However, as mentioned above, this type of wastewaters may contain different compounds than domestic wastewaters. Hospital Wastewater (HWW) is wastewater generated from all activities of the hospital, medical and non medical. Nowadays, hospitals are considered as one of the biggest sources of wastewater along with urban sources, agricultural effluents and industrial sources. As a health-care waste, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components due to using disinfectants, pharmaceuticals, radionuclides and solvents making not suitable the connection of hospital wastewater to the municipal sewage network. These characteristics may represent a serious health hazard and children, adults and animals all have the potential to come into contact with this water. Therefore, the treatment of hospital wastewater is an important current interest point to focus on. This paper aims to approach on the investigation of hospital wastewater treatment by membrane systems. This study aim is to determined hospital wastewater’s characterization and also evaluates the efficiency of hospital wastewater treatment by high pressure filtration systems such as ultrafiltration (UF). Hospital wastewater samples were taken directly from sewage system from Şişli Etfal Training and Research Hospital, located in the district of Şişli, in the European part of Istanbul. The hospital is a 784 bed tertiary care center with a daily outpatient department of 3850 patients. Ultrafiltration membrane is used as an experimental treatment and the influence of the pressure exerted on the membranes was examined, ranging from 1 to 3 bar. The permeate flux across the membrane was observed to define the flooding membrane points. The global COD and BOD5 removal efficiencies were 54% and 75% respectively for ultrafiltration, all the SST removal efficiencies were above 90% and a successful removal of the pathological bacteria measured was achieved.

Keywords: hospital wastewater, membrane, ultrafiltration, treatment

Procedia PDF Downloads 304
806 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.

Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis

Procedia PDF Downloads 291
805 Horizontal Bone Augmentation Using Two Membranes at Dehisced Implant Sites: A Randomized Clinical Study

Authors: Monika Bansal

Abstract:

Background: Placement of dental implant in narrow alveolar ridge is challenging to be treated. GBR procedure is currently most widely used to augment the deficient alveolar ridges and to treat the fenestration and dehiscence around dental implants. Thus, the objectives of the present study were to evaluate as well as compare the clinical performance of collagen membrane and titanium mesh for horizontal bone augmentation at dehisced implant sites. Methods and material: Total 12 single edentulous implant sites with buccal bone deficiency in 8 subjects were equally divided and treated simultaneously with either of the two membranes and DBBM(Bio-Oss) bone graft. Primary outcome measurements in terms of defect height and defect width were made using a calibrated plastic periodontal probe. Re-entry surgery was performed to remeasure the augmented site and to remove Ti-mesh at 6th month. Independent paired t-tests for the inter-group comparison and student-paired t-tests for the intra-group comparison were performed. The differences were considered to be significant at p ≤ 0.05. Results: Mean defect fill with respect to height and width was 3.50 ± 0.54 mm (87%) and 2.33 ± 0.51 mm (82%) for collagen membrane and 3.83 ± 0.75 mm (92%) and 2.50 ± 0.54 mm (88%) for Ti-mesh group respectively. Conclusions: Within the limitation of the study, it was concluded that mean defect height and width after 6 months were statistically significant within the group without significant difference between them, although defect resolution was better in Ti-mesh.

Keywords: collagen membrane, dehiscence, dental implant, horizontal bone, augmentation, ti-mesh

Procedia PDF Downloads 111
804 Possibility of Membrane Filtration to Treatment of Effluent from Digestate

Authors: Marcin Debowski, Marcin Zielinski, Magdalena Zielinska, Paulina Rusanowska

Abstract:

The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant.

Keywords: digestate, membrane filtration, microalgae cultivation, Chlorella sp.

Procedia PDF Downloads 352
803 Comparison of Different Methods of Evaluating Nozzle Junction Stresses under External Loads

Authors: Vinod Kumar, Arun Kumar, Surjit Angra

Abstract:

This paper addresses the junction stress analysis of orthogonally intersecting thin walled cylindrical shell and thin walled cylindrical nozzle subjected to external loading on nozzle. Junction stresses have been calculated theoretically by welding research council (WRC) bulletins 107 and 297 for different nozzle loads. WRC bulletins 107 and 297 have been used by design engineers for calculating nozzle-vessel junction stresses since their publication. They give simple empirical relations and easy in application. Also 3D FEA in which material is elastic has been done in ANSYS software with 8 node solid element model and results of FEA have been compared with WRC results. Stress intensities obtained by WRC 297 are generally slightly higher than obtained by WRC 107. Membrane stresses obtained by FEA are much higher than WRC and membrane plus bending stresses obtained by FEA are lower than WRC.

Keywords: FEA, junction stress, solid element, WRC 107, WRC 297

Procedia PDF Downloads 580
802 Influence of Layer-by-Layer Coating Parameters on the Properties of Hybrid Membrane for Water Treatment

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen WIese

Abstract:

The presented investigation studies the correlation between the process parameters of Layer-by-Layer (LbL) coatings and properties of the produced hybrid membranes for water treatment. The coating of alumina ceramic support membrane with polyelectrolyte multilayers on top results in hybrid membranes with increased fouling resistant behavior, high retention (up to 90%) of salt ions and various pharmaceuticals, selectivity to various organic molecules as known from LbL coated polyether sulfone membranes and the possibility of pH response control. Chosen polyelectrolytes were added to the support using the LbL-coating process. Parameters like the type of polyelectrolyte, ionic strength, and pH were varied in order to find the most suitable process conditions and to study how they influence the properties of the final product. The applied LbL-films was investigated in respect to its homogeneity and penetration depth. The analysis of the layer buildup was performed using fluorescence labeled polyelectrolyte molecules and Confocal Laser Scanning Microscopy as well as Scanning and Transmission Electron Microscopy. Furthermore, the influence of the coating parameters on the porosity, surface potential, retention, and permeability of the developed hybrid membranes were estimated. In conclusion, a comparison was drawn between the filtration performance of the uncoated alumina ceramic membrane and modified hybrid membranes.

Keywords: water treatment, membranes, ceramic membranes, hybrid membranes, layer-by-layer modification

Procedia PDF Downloads 180
801 A Concept of Rational Water Management at Local Utilities: The Use of RO for Water Supply and Wastewater Treatment/Reuse

Authors: N. Matveev, A. Pervov

Abstract:

Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for.

Keywords: reverse osmosis, stormwater treatment, open-channel module, wastewater reuse

Procedia PDF Downloads 319
800 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes

Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay

Abstract:

Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.

Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR

Procedia PDF Downloads 326
799 Investigation of Adherence to Treatment, Perception, and Predictors of Adherence among Patients with End-Stage Renal Disease on Haemodialysis in the Eastern Region of Saudi Arabia: A Descriptive Cross-Sectional Study

Authors: Rima Al Garni, Emad Al Shdaifat, Sahar Elmetwalli, Mohammad Alzaid, Abdulrahman Alghothayyan, Sara Al Abd Al Hai, Seham Al Rashidi

Abstract:

Aim: To investigate the prevalence of non-adherence of patients on haemodialysis and explore their perception of the importance of adherence to the therapeutic regime and estimate the predictors for adherence to the therapeutic regime. Background: End-stage renal disease is commonly treated by haemodialysis. Haemodialysis treatment alone is not effective in replacing kidney function. Diet and fluid restrictions, along with supplementary medications, are mandatory for the survival and well-being of patients. Hence, adherence to this therapeutic regimen is essential. However, non-adherence to diet and fluid restrictions, medications, and dialysis is common among patients on haemodialysis. Design: Descriptive cross-sectional method was applied to investigate the prevalence of non-adherence to treatment, including adherence to diet and fluid restrictions, medications, and dialysis sessions. Methods: Structured interviews were conducted using the Arabic version of the End-Stage Renal Disease Adherence Questionnaire. The sample included 230 patients undergoing haemodialysis in the Eastern Region of Saudi Arabia. Data were analysed using descriptive statistics and multiple regressions. Results/Findings: Most patients had good adherence (71.3%), and only 3.9% had poor adherence. The divorced or widowed patient had higher adherence compared with single (P=0.011) and married participants (P=0.045) through using the post hoc test. Patients above 60 years had higher adherence compared to patients below 40 years old (P=0.016) using the post hoc test. For the perception of the importance of adherence to the therapeutic regime subscale, two-thirds of the patients had lower scores (<=11). Conclusion: Adherence to therapeutic regime is high for three fourth of patients undergoing haemodialysis in the Eastern Region of Saudi Arabia; this finding is similar to results abstracted from the local literature. This result would help us highlight the needs of patients who are not compliant with their treatment plans and investigate the consequences of non-adherence on their well-being and general health. Hence, plan individualised therapeutic programmes that could raise their awareness and influence their adherence to therapeutic regimes.

Keywords: adherence to treatment, haemodialysis, end stage renal disease, diet and fluid restrictions

Procedia PDF Downloads 92
798 A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System

Authors: Nishanthi N. S., Srikanth Vedantam

Abstract:

Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability.

Keywords: capsule, cell squeezing, dissipative particle dynamics, intracellular delivery, microfluidics, numerical simulations

Procedia PDF Downloads 140
797 An Approach For Evolving a Relaible Low Power Ultra Wide Band Transmitter with Capacitve Sensing

Authors: N.Revathy, C.Gomathi

Abstract:

This work aims for a tunable capacitor as a sensor which can vary the control voltage of a voltage control oscillator in a ultra wide band (UWB) transmitter. In this paper power consumption is concentrated. The reason for choosing a capacitive sensing is it give slow temperature drift, high sensitivity and robustness. Previous works report a resistive sensing in a voltage control oscillator (VCO) not aiming at power consumption. But this work aims for power consumption of a capacitive sensing in ultra wide band transmitter. The ultra wide band transmitter to be used is a direct modulation of pulses. The VCO which is the heart of pulse generator of UWB transmitter works on the principle of voltage to frequency conversion. The VCO has and odd number of inverter stages which works on the control voltage input this input is now from a variable capacitor and the buffer stages is reduced from the previous work to maintain the oscillating frequency. The VCO is also aimed to consume low power. Then the concentration in choosing a variable capacitor is aimed. A compact model of a capacitor with the transient characteristics is to be designed with a movable dielectric and multi metal membranes. Previous modeling of the capacitor transient characteristics is with a movable membrane and a fixed membrane. This work aims at a membrane with a wide tuning suitable for ultra wide band transmitter.This is used in this work because a capacitive in a ultra wide transmitter need to be tuned in such a way that all satisfies FCC regulations.

Keywords: capacitive sensing, ultra wide band transmitter, voltage control oscillator, FCC regulation

Procedia PDF Downloads 392
796 Pre-conditioning and Hot Water Sanitization of Reverse Osmosis Membrane for Medical Water Production

Authors: Supriyo Das, Elbir Jove, Ajay Singh, Sophie Corbet, Noel Carr, Martin Deetz

Abstract:

Water is a critical commodity in the healthcare and medical field. The utility of medical-grade water spans from washing surgical equipment, drug preparation to the key element of life-saving therapy such as hydrotherapy and hemodialysis for patients. A properly treated medical water reduces the bioburden load and mitigates the risk of infection, ensuring patient safety. However, any compromised condition during the production of medical-grade water can create a favorable environment for microbial growth putting patient safety at high risk. Therefore, proper upstream treatment of the medical water is essential before its application in healthcare, pharma and medical space. Reverse Osmosis (RO) is one of the most preferred treatments within healthcare industries and is recommended by all International Pharmacopeias to achieve the quality level demanded by global regulatory bodies. The RO process can remove up to 99.5% of constituents from feed water sources, eliminating bacteria, proteins and particles sizes of 100 Dalton and above. The combination of RO with other downstream water treatment technologies such as Electrodeionization and Ultrafiltration meet the quality requirements of various pharmacopeia monographs to produce highly purified water or water for injection for medical use. In the reverse osmosis process, the water from a liquid with a high concentration of dissolved solids is forced to flow through an especially engineered semi-permeable membrane to the low concentration side, resulting in high-quality grade water. However, these specially engineered RO membranes need to be sanitized either chemically or at high temperatures at regular intervals to keep the bio-burden at the minimum required level. In this paper, we talk about Dupont´s FilmTec Heat Sanitizable Reverse Osmosis membrane (HSRO) for the production of medical-grade water. An HSRO element must be pre-conditioned prior to initial use by exposure to hot water (80°C-85°C) for its stable performance and to meet the manufacturer’s specifications. Without pre-conditioning, the membrane will show variations in feed pressure operations and salt rejection. The paper will discuss the critical variables of pre-conditioning steps that can affect the overall performance of the HSRO membrane and demonstrate the data to support the need for pre-conditioning of HSRO elements. Our preliminary data suggests that there can be up to 35 % reduction in flow due to initial heat treatment, which also positively affects the increase in salt rejection. The paper will go into detail about the fundamental understanding of the performance change of HSRO after the pre-conditioning step and its effect on the quality of medical water produced. The paper will also discuss another critical point, “regular hot water sanitization” of these HSRO membranes. Regular hot water sanitization (at 80°C-85°C) is necessary to keep the membrane bioburden free; however, it can negatively impact the performance of the membrane over time. We will demonstrate several data points on hot water sanitization using FilmTec HSRO elements and challenge its robustness to produce quality medical water. The last part of this paper will discuss the construction details of the FilmTec HSRO membrane and features that make it suitable to pre-condition and sanitize at high temperatures.

Keywords: heat sanitizable reverse osmosis, HSRO, medical water, hemodialysis water, water for Injection, pre-conditioning, heat sanitization

Procedia PDF Downloads 211
795 The Psychosocial Issues and Support Needs of Patients with Chronic Kidney Disease Undergoing Hemodialysis: A Qualitative Study from Nepal

Authors: Akriti Kafle Baral, Ruixing Zhang, Dzifa K Lalit, Manthar M Alli

Abstract:

Introduction: Hemodialysis is the most common type of dialysis globally approximately million are reported to receive this type of dialysis. Psychosocial issues in hemodialysis are the psychological and socioeconomic burdens emanating from the initiation and course of treatment and have the potential for gross deterioration in the quality of life and general well-being of patients. Understanding the psychosocial issues and needs of patients undergoing hemodialysis could pave the way for comprehensive support and therapies designed to reduce stress, improve social support, and foster mental resilience. Objectives: The aim of this study was to explore the psychosocial issues and support needs of patients undergoing hemodialysis at a tertiary care center in Nepal. Methods: A qualitative descriptive study was conducted among 20 purposefully selected patients attending hemodialysis treatment at Pokhara Academy of Health Sciences, Nepal. Data was analyzed via thematic analysis. Results: The study resulted in three major themes which included Emotional, psychological, and spiritual struggles, Social and economic impacts, and Support and information needs. Moreover, 16 sub-themes emerged which are Frustration with daily life, Constant fear of death, Thoughts of self-harm, Perceived Burden on Family, Sense of Divine Punishment, Sense of Unfairness, Fear about future uncertainties, Social avoidance, Social stigmatization, Loss of employment, Financial strain, Transportation challenges, Need for early, clear and comprehensive information, Need for support and reassurance from family, Support through peer connections, and Reassurance from healthcare providers. Conclusion: The findings of this study indicate that patients undergoing hemodialysis in Nepal experience numerous hardships and multifaceted struggles that require support from different dimensions. Establishing robust support systems that include family involvement, peer networks, and effective communication from healthcare professionals can significantly mitigate feelings of anxiety and isolation.

Keywords: hemodialysis, psychosocial issues, support needs, chronic kidney disease, end stage renal disease, Nepal

Procedia PDF Downloads 8
794 Preparation and Evaluation of Gelatin-Hyaluronic Acid-Polycaprolactone Membrane Containing 0.5 % Atorvastatin Loaded Nanostructured Lipid Carriers as a Nanocomposite Scaffold for Skin Tissue Engineering

Authors: Mahsa Ahmadi, Mehdi Mehdikhani-Nahrkhalaji, Jaleh Varshosaz, Shadi Farsaei

Abstract:

Gelatin and hyaluronic acid are commonly used in skin tissue engineering scaffolds, but because of their low mechanical properties and high biodegradation rate, adding a synthetic polymer such as polycaprolactone could improve the scaffold properties. Therefore, we developed a gelatin-hyaluronic acid-polycaprolactone scaffold, containing 0.5 % atorvastatin loaded nanostructured lipid carriers (NLCs) for skin tissue engineering. The atorvastatin loaded NLCs solution was prepared by solvent evaporation method and freeze drying process. Synthesized atorvastatin loaded NLCs was added to the gelatin and hyaluronic acid solution, and a membrane was fabricated with solvent evaporation method. Thereafter it was coated by a thin layer of polycaprolactone via spine coating set. The resulting scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. Moreover, mechanical properties, in vitro degradation in 7 days period, and in vitro drug release of scaffolds were also evaluated. SEM images showed the uniform distributed NLCs with an average size of 100 nm in the scaffold structure. Mechanical test indicated that the scaffold had a 70.08 Mpa tensile modulus which was twofold of tensile modulus of normal human skin. A Franz-cell diffusion test was performed to investigate the scaffold drug release in phosphate buffered saline (pH=7.4) medium. Results showed that 72% of atorvastatin was released during 5 days. In vitro degradation test demonstrated that the membrane was degradated approximately 97%. In conclusion, suitable physicochemical and biological properties of membrane indicated that the developed gelatin-hyaluronic acid-polycaprolactone nanocomposite scaffold containing 0.5 % atorvastatin loaded NLCs could be used as a good candidate for skin tissue engineering applications.

Keywords: atorvastatin, gelatin, hyaluronic acid, nano lipid carriers (NLCs), polycaprolactone, skin tissue engineering, solvent casting, solvent evaporation

Procedia PDF Downloads 252
793 Vitamin B9 Separation by Synergic Pertraction

Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan

Abstract:

Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.

Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid

Procedia PDF Downloads 275
792 Molecular Detection of E. coli in Treated Wastewater and Well Water Samples Collected from Al Riyadh Governorate, Saudi Arabia

Authors: Hanouf A. S. Al Nuwaysir, Nadine Moubayed, Abir Ben Bacha, Islem Abid

Abstract:

Consumption of waste water continues to cause significant problems for human health in both developed and developing countries. Many regulations have been implied by different world authorities controlling water quality for the presence of coliforms used as standard indicators of water quality deterioration and historically leading health protection concept. In this study, the European directive for the detection of Escherichia coli, ISO 9308-1, was applied to examine and monitor coliforms in water samples collected from Wadi Hanifa and neighboring wells, Riyadh governorate, kingdom of Saudi Arabia, which is used for irrigation and industrial purposes. Samples were taken from different locations for 8 months consecutively, chlorine concentration ranging from 0.1- 0.4 mg/l, was determined using the DPD FREE CHLORINE HACH kit. Water samples were then analyzed following the ISO protocol which relies on the membrane filtration technique (0.45µm, pore size membrane filter) and a chromogenic medium TTC, a lactose based medium used for the detection and enumeration of total coliforms and E.coli. Data showed that the number of bacterial isolates ranged from 60 to 300 colonies/100ml for well and surface water samples respectively; where higher numbers were attributed to the surface samples. Organisms which apparently ferment lactose on TTC agar plates, appearing as orange colonies, were selected and additionally cultured on EMB and MacConkey agar for a further differentiation among E.coli and coliform bacteria. Two additional biochemical tests (Cytochrome oxidase and indole from tryptophan) were also investigated to detect and differentiate the presence of E.coli from other coliforms, E. coli was identified in an average of 5 to 7colonies among 25 selected colonies.On the other hand, a more rapid, specific and sensitive analytical molecular detection namely single colony PCR was also performed targeting hha gene to sensitively detect E.coli, giving more accurate and time consuming identification of colonies considered presumptively as E.coli. Comparative methodologies, such as ultrafiltration and direct DNA extraction from membrane filters (MoBio, Grermany) were also applied; however, results were not as accurate as the membrane filtration, making it a technique of choice for the detection and enumeration of water coliforms, followed by sufficiently specific enzymatic confirmatory stage.

Keywords: coliform, cytochrome oxidase, hha primer, membrane filtration, single colony PCR

Procedia PDF Downloads 318
791 The Hepatoprotective Effects of Aquatic Extract of Levesticum Officinale against Paraquat Toxicity of Hepatocytes

Authors: Hasan Afarnegan, Ali Shahraki, Jafar Shahraki

Abstract:

Paraquat is widely used as a strong nitrogen-based herbicide for controlling of weeds in agriculture. This poison is extremely toxic for humans which induces several – organ failure by accumulation in cells and many instances of death occurred due to its poisoning. Paraquat metabolized primarily in the liver. The purpose of this study was to assess the effects of aquatic extract of levisticum officinale on oxidative status and biochemical factors in hepatocytes exposed to paraquat. Our results determined that hepatocytes destruction induced by paraquat is mediated by reactive oxygen species (ROS) production, lipid peroxidation and decrease of mitochondrial membrane potential were significantly (P<0.05) prevented by aquatic extract of Levisicum officinale (100, 200 and 300 µg/ml). These effects of paraquat also prevented via antioxidants and ROS scavengers (α-tocopherol, DMSO, manitol), mitochondrial permeability transition (MPT) pore sealing compound (carnitine).MPT pore sealing compound inhibited the hepatotoxicity, indicating that paraquat induced cell death via mithochondrial pathway. Pretreatment of hepatocytes with aquatic extracts of Levisticum officinale, antioxidants and ROS scavengers also blocked hepatic cell death caused by paraquat, suggesting that oxidative stress may be directly induced decline of mithochondrial membrane potential. In conclusion, paraquat hepatotoxicity can be attributed to oxidative stress and continued by mithochondrial membrane potential disruption. Levisticum officinale aquatic extract, presumably due to its strong antoxidant properties, could protect the destructive effects of paraquat on rat hepatocytes.

Keywords: hepatocyte protection, levisticum officinale, oxidative stress, paraquat

Procedia PDF Downloads 222
790 Illness Roles and Coping Strategies in Aged Patients on Hemodialysis in Lahore

Authors: Zainab Bashir

Abstract:

There has been a lot of quantitative research on end-stage renal disease (ESRD), its implications, psychological effects and so on across the world, however little qualitative information is available on coping strategies and illness role adaptations specific to renal failure. This article attempts to learn about illness roles and coping strategies specific to aged ESRD patients on hemodialysis in Lahore. The patients were interviewed on a structured schedule and were asked questions on tasks and coping related to physical, psychological, and social consequences of renal failure. Standardised techniques and methods of grounded theory were used to analyse and code the information in this small-scale, in-depth study. An analysis of tasks faced by the ESRD patients and coping they employ to fulfill or overcome those tasks were done. This analysis was based on three different types of data: experiential accounts of ESRD patients with respect to tasks and strategies for coping, coping styles and illness roles typologies, and monographs of coping styles. In the information gathered using interviews with respondents, three styles of problem focused coping, and two styles of emotion focused coping could be identified. Problem focused coping included making physical adjustments to suit the requirements of the health condition, including dialysis and medical regime as integral part of patients’ lives, and altering future plans according to the course of the disease. Emotion focused coping included seeking help to manage stress/anxiety and resenting the disease condition and giving up. These coping styles are linked to the illness roles assigned to the respondents. In conclusion, there is no single formula to deal with the disease, however, some typologies can be established. In most of the cases discussed in the paper, adjustment to a regular dialysis routine, restriction in bodily function, inability to work and negative impacts on family life, especially spousal relationships have come to fore as common problems. A large part of coping with these problems had to do with mentally accepting the disease and carrying on despite. These cannot be seen as deviant adaptations to the depressive situation arising from renal failure, but more of patterned ways in which patients can approximate a close to normal lifestyle despite the terminal disease.

Keywords: coping strategies, ESRD patients, hemodialysis, illness roles

Procedia PDF Downloads 122
789 Critical Role of Lipid Rafts in Influenza a Virus Binding to Host Cell

Authors: Dileep Kumar Verma, Sunil Kumar Lal

Abstract:

Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Influenza A Virus (IAV) surface protein hemagglutinin is known to play an important role in viral attachment to the host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Selective nature of Influenza A virus to utilize rafts micro-domain for efficient virus assembly and budding has been explored in depth. However, the detailed mechanism of IAV binding to host cell membrane and entry into the host remains elusive. In the present study we investigated the role of lipid rafts in early life cycle events of IAV. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol by Methyl-β-Cyclodextrin. Using GM1, a well-known lipid raft marker, we were able to observe co-localization of IAV on lipid rafts on the host cell membrane. This experiment suggests a direct involvement of lipid rafts in the initiation of the IAV life cycle. Upon disruption of lipid rafts by Methyl-b-cyclodextrin, we observed a significant reduction in IAV binding on the host cell surface indicating a significant decrease in virus attachment to coherent membrane rafts. Our results provide proof that host lipid rafts and their constituents play an important role in the adsorption of IAV. This study opens a new avenues in IAV virus-host interactions to combat infection at a very early steps of the viral lifecycle.

Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1

Procedia PDF Downloads 365
788 Microbiological Analysis, Cytotoxic and Genotoxic Effects from Material Captured in PM2.5 and PM10 Filters Used in the Aburrá Valley Air Quality Monitoring Network (Colombia)

Authors: Carmen E. Zapata, Juan Bautista, Olga Montoya, Claudia Moreno, Marisol Suarez, Alejandra Betancur, Duvan Nanclares, Natalia A. Cano

Abstract:

This study aims to evaluate the diversity of microorganisms in filters PM2.5 and PM10; and determine the genotoxic and cytotoxic activity of the complex mixture present in PM2.5 filters used in the Aburrá Valley Air Quality Monitoring Network (Colombia). The research results indicate that particulate matter PM2.5 of different monitoring stations are bacteria; however, this study of detection of bacteria and their phylogenetic relationship is not complete evidence to connect the microorganisms with pathogenic or degrading activities of compounds present in the air. Additionally, it was demonstrated the damage induced by the particulate material in the cell membrane, lysosomal and endosomal membrane and in the mitochondrial metabolism; this damage was independent of the PM2.5 concentrations in almost all the cases.

Keywords: cytotoxic, genotoxic, microbiological analysis, PM10, PM2.5

Procedia PDF Downloads 345
787 Membrane Technologies for Obtaining Bioactive Fractions from Blood Main Protein: An Exploratory Study for Industrial Application

Authors: Fatima Arrutia, Francisco Amador Riera

Abstract:

The meat industry generates large volumes of blood as a result of meat processing. Several industrial procedures have been implemented in order to treat this by-product, but are focused on the production of low-value products, and in many cases, blood is simply discarded as waste. Besides, in addition to economic interests, there is an environmental concern due to bloodborne pathogens and other chemical contaminants found in blood. Consequently, there is a dire need to find extensive uses for blood that can be both applicable to industrial scale and able to yield high value-added products. Blood has been recognized as an important source of protein. The main blood serum protein in mammals is serum albumin. One of the top trends in food market is functional foods. Among them, bioactive peptides can be obtained from protein sources by microbiological fermentation or enzymatic and chemical hydrolysis. Bioactive peptides are short amino acid sequences that can have a positive impact on health when administered. The main drawback for bioactive peptide production is the high cost of the isolation, purification and characterization techniques (such as chromatography and mass spectrometry) that make unaffordable the scale-up. On the other hand, membrane technologies are very suitable to apply to the industry because they offer a very easy scale-up and are low-cost technologies, compared to other traditional separation methods. In this work, the possibility of obtaining bioactive peptide fractions from serum albumin by means of a simple procedure of only 2 steps (hydrolysis and membrane filtration) was evaluated, as an exploratory study for possible industrial application. The methodology used in this work was, firstly, a tryptic hydrolysis of serum albumin in order to release the peptides from the protein. The protein was previously subjected to a thermal treatment in order to enhance the enzyme cleavage and thus the peptide yield. Then, the obtained hydrolysate was filtered through a nanofiltration/ultrafiltration flat rig at three different pH values with two different membrane materials, so as to compare membrane performance. The corresponding permeates were analyzed by liquid chromatography-tandem mass spectrometry technology in order to obtain the peptide sequences present in each permeate. Finally, different concentrations of every permeate were evaluated for their in vitro antihypertensive and antioxidant activities though ACE-inhibition and DPPH radical scavenging tests. The hydrolysis process with the previous thermal treatment allowed achieving a degree of hydrolysis of the 49.66% of the maximum possible. It was found that peptides were best transmitted to the permeate stream at pH values that corresponded to their isoelectric points. Best selectivity between peptide groups was achieved at basic pH values. Differences in peptide content were found between membranes and also between pH values for the same membrane. The antioxidant activity of all permeates was high compared with the control only for the highest dose. However, antihypertensive activity was best for intermediate concentrations, rather than higher or lower doses. Therefore, although differences between them, all permeates were promising regarding antihypertensive and antioxidant properties.

Keywords: bioactive peptides, bovine serum albumin, hydrolysis, membrane filtration

Procedia PDF Downloads 200
786 The First Report of Aberrant Corneal Occlusion in Rabbit in Iran

Authors: Bahador Bardshiri, Omid Moradi, Amir Komeilian, Nima Panahifar

Abstract:

Formation of a conjunctival membrane over the corneal surface is a condition unique to rabbits that has been labeled aberrant corneal occlusion or pseudopterygium. In the summer of 2013, a five years old male Standard Chinchilla rabbit were presented to Karaj Central Veterinary hospital and the owner complained that his rabbit shows degrees of blindness and there were opacities on both eyes of the presented rabbit. Ophthalmic examination of the affected eyes revealed a conjunctival fold stretching over the cornea of both eyes. The fold originated from limbus and it was vascularized and centrally thickened. There were no attachments to the corneal epithelium and the fold could be easily lifted. Surgery was performed under general anesthesia. The conjunctival fold was incised centrifugally up to its attachment at the limbus and the lid margin using small scissors. The central rim of the segment was then replaced to its normal position in the fornix and fixed with mattress sutures (7/0) passing through outside skin. After the surgery, eye drops containing dexamethasone, gentamicin and polymixin were applied twice daily up to 3 weeks. Within the observation period (8 months) no recurrence was noted. "Pseudo" in the term pseudopterygium refers to the fact that the conjunctival membrane is not adhering to the underlying cornea, but growing over it. In rare cases, the membrane may be loosely attached to the cornea, but can be easily separated without causing damage. It can cover only a small part of the cornea with an annular peripheral opacification of the cornea, or cover it almost fully, leading to blindness. Ethiopathogenesis remains unclear and recurrence of the problem is very likely. The surgical technique that used here decreases probability of recurrence of conjunctival fold.

Keywords: rabbit, cornea, aberrant corneal occlusion, pseudopterygium

Procedia PDF Downloads 341