Search results for: electron transport
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4192

Search results for: electron transport

952 Next Generation of Tunnel Field Effect Transistor: NCTFET

Authors: Naima Guenifi, Shiromani Balmukund Rahi, Amina Bechka

Abstract:

Tunnel FET is one of the most suitable alternatives FET devices for conventional CMOS technology for low-power electronics and applications. Due to its lower subthreshold swing (SS) value, it is a strong follower of low power applications. It is a quantum FET device that follows the band to band (B2B) tunneling transport phenomena of charge carriers. Due to band to band tunneling, tunnel FET is suffering from a lower switching current than conventional metal-oxide-semiconductor field-effect transistor (MOSFET). For improvement of device features and limitations, the newly invented negative capacitance concept of ferroelectric material is implemented in conventional Tunnel FET structure popularly known as NC TFET. The present research work has implemented the idea of high-k gate dielectric added with ferroelectric material on double gate Tunnel FET for implementation of negative capacitance. It has been observed that the idea of negative capacitance further improves device features like SS value. It helps to reduce power dissipation and switching energy. An extensive investigation for circularity uses for digital, analog/RF and linearity features of double gate NCTFET have been adopted here for research work. Several essential designs paraments for analog/RF and linearity parameters like transconductance(gm), transconductance generation factor (gm/IDS), its high-order derivatives (gm2, gm3), cut-off frequency (fT), gain-bandwidth product (GBW), transconductance generation factor (gm/IDS) has been investigated for low power RF applications. The VIP₂, VIP₃, IMD₃, IIP₃, distortion characteristics (HD2, HD3), 1-dB, the compression point, delay and power delay product performance have also been thoroughly studied.

Keywords: analog/digital, ferroelectric, linearity, negative capacitance, Tunnel FET, transconductance

Procedia PDF Downloads 174
951 Establishment and Characterization of a Dentigerous Cyst Cell Line

Authors: Muñiz-Lino Marcos Agustín, Vazquez Borbolla Jessica, Licéaga-Escalera Carlos

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. Dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth which has not erupted and it contain is liquid. The treatment of odontogenic tumors and cysts usually are partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis as well in its development to odontogenic tumors remains unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicle, indicating that DeCy-1 cells derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS, where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible of this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, MMP20, cancer, cell culture

Procedia PDF Downloads 117
950 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials

Authors: I. Kerti, G. Sezen, S. Daglilar

Abstract:

This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.

Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide

Procedia PDF Downloads 328
949 Association Between Short-term NOx Exposure and Asthma Exacerbations in East London: A Time Series Regression Model

Authors: Hajar Hajmohammadi, Paul Pfeffer, Anna De Simoni, Jim Cole, Chris Griffiths, Sally Hull, Benjamin Heydecker

Abstract:

Background: There is strong interest in the relationship between short-term air pollution exposure and human health. Most studies in this field focus on serious health effects such as death or hospital admission, but air pollution exposure affects many people with less severe impacts, such as exacerbations of respiratory conditions. A lack of quantitative analysis and inconsistent findings suggest improved methodology is needed to understand these effectsmore fully. Method: We developed a time series regression model to quantify the relationship between daily NOₓ concentration and Asthma exacerbations requiring oral steroids from primary care settings. Explanatory variables include daily NOₓ concentration measurements extracted from 8 available background and roadside monitoring stations in east London and daily ambient temperature extracted for London City Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the model. The dependent variable was the daily number of oral steroid courses prescribed for GP registered patients with asthma in east London. A mixed distribution model was then fitted to the significant lags of the regression model. Result: Results of the time series modelling showed a significant relationship between NOₓconcentrations on each day and the number of oral steroid courses prescribed in the following three weeks. In addition, the model using only roadside stations performs better than the model with a mixture of roadside and background stations.

Keywords: air pollution, time series modeling, public health, road transport

Procedia PDF Downloads 121
948 A Modelling Study of the Photochemical and Particulate Pollution Characteristics above a Typical Southeast Mediterranean Urban Area

Authors: Fameli Kyriaki-Maria, Assimakopoulos D. Vasiliki, Kotroni Vassiliki

Abstract:

The Greater Athens Area (GAA) faces photochemical and particulate pollution episodes as a result of the combined effects of local pollutant emissions, regional pollution transport, synoptic circulation and topographic characteristics. The area has undergone significant changes since the Athens 2004 Olympic Games because of large scale infrastructure works that lead to the shift of population to areas previously characterized as rural, the increase of the traffic fleet and the operation of highways. However, no recent modelling studies have been performed due to the lack of an accurate, updated emission inventory. The photochemical modelling system MM5/CAMx was applied in order to study the photochemical and particulate pollution characteristics above the GAA for two distinct ten-day periods in the summer of 2006 and 2010, where air pollution episodes occurred. A new updated emission inventory was used based on official data. Comparison of modeled results with measurements revealed the importance and accuracy of the new Athens emission inventory as compared to previous modeling studies. The model managed to reproduce the local meteorological conditions, the daily ozone and particulates fluctuations at different locations across the GAA. Higher ozone levels were found at suburban and rural areas as well as over the sea at the south of the basin. Concerning PM10, high concentrations were computed at the city centre and the southeastern suburbs in agreement with measured data. Source apportionment analysis showed that different sources contribute to the ozone levels, the local sources (traffic, port activities) affecting its formation.

Keywords: photochemical modelling, urban pollution, greater Athens area, MM5/CAMx

Procedia PDF Downloads 258
947 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 248
946 Transverse Momentum Dependent Factorization and Evolution for Spin Physics

Authors: Bipin Popat Sonawane

Abstract:

After 1988 Electron muon Collaboration (EMC) announcement of measurement of spin dependent structure function, it has been found that it has become a need to understand spin structure of a hadron. In the study of three-dimensional spin structure of a proton, we need to understand the foundation of quantum field theory in terms of electro-weak and strong theories using rigorous mathematical theories and models. In the process of understanding the inner dynamical stricture of proton we need understand the mathematical formalism in perturbative quantum chromodynamics (pQCD). In QCD processes like proton-proton collision at high energy we calculate cross section using conventional collinear factorization schemes. In this calculations, parton distribution functions (PDFs) and fragmentation function are used which provide the information about probability density of finding quarks and gluons ( partons) inside the proton and probability density of finding final hadronic state from initial partons. In transverse momentum dependent (TMD) PDFs and FFs, collectively called as TMDs, take an account for intrinsic transverse motion of partons. The TMD factorization in the calculation of cross sections provide a scheme of hadronic and partonic states in the given QCD process. In this study we review Transverse Momentum Dependent (TMD) factorization scheme using Collins-Soper-Sterman (CSS) Formalism. CSS formalism considers the transverse momentum dependence of the partons, in this formalism the cross section is written as a Fourier transform over a transverse position variable which has physical interpretation as impact parameter. Along with this we compare this formalism with improved CSS formalism. In this work we study the TMD evolution schemes and their comparison with other schemes. This would provide description in the process of measurement of transverse single spin asymmetry (TSSA) in hadro-production and electro-production of J/psi meson at RHIC, LHC, ILC energy scales. This would surely help us to understand J/psi production mechanism which is an appropriate test of QCD.

Keywords: QCD, PDF, TMD, CSS

Procedia PDF Downloads 46
945 Modeling of Gas Migration in High-Pressure–High-Temperature Fields

Authors: Deane Roehl, Roberto Quevedo

Abstract:

Gas migration from pressurized formations is a problem reported in the oil and gas industry. This means increased risks for drilling, production, well integrity, and hydrocarbon escape. Different processes can contribute to the development of pressurized formations, particularly in High-Pressure–High-Temperature (HPHT) gas fields. Over geological time-scales, the different formations of those fields have maintained and/or developed abnormal pressures owing to low permeability and the presence of an impermeable seal. However, if this seal is broken, large volumes of gas could migrate into other less pressurized formations. Three main mechanisms for gas migration have been identified in the literature –molecular diffusion, continuous-phase flow, and continuous-phase flow coupled with mechanical effects. In relation to the latter, gas migration can occur as a consequence of the mechanical effects triggered by reservoir depletion. The compaction of the reservoir can redistribute the in-situ stresses sufficiently to induce deformations that may increase the permeability of rocks and lead to fracture processes or reactivate nearby faults. The understanding of gas flow through discontinuities is still under development. However, some models based on porosity changes and fracture aperture have been developed in order to obtain enhanced permeabilities in numerical simulations. In this work, a simple relationship to integrate fluid flow through rock matrix and discontinuities has been implemented in a fully thermo-hydro-mechanical simulator developed in-house. Numerical simulations of hydrocarbon production in an HPHT field were carried out. Results suggest that rock permeability can be considerably affected by the deformation of the field, creating preferential flow paths for the transport of large volumes of gas.

Keywords: gas migration, pressurized formations, fractured rocks, numerical modeling

Procedia PDF Downloads 127
944 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.

Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium

Procedia PDF Downloads 402
943 Portuguese Guitar Strings Characterization and Comparison

Authors: P. Serrão, E. Costa, A. Ribeiro, V. Infante

Abstract:

The characteristic sonority of the Portuguese guitar is in great part what makes Fado so distinguishable from other traditional song styles. The Portuguese guitar is a pear-shaped plucked chordophone with six courses of double strings. This study compares the two types of plain strings available for Portuguese guitar and used by the musicians. One is stainless steel spring wire, the other is high carbon spring steel (music wire). Some musicians mention noticeable differences in sound quality between these two string materials, such as a little more brightness and sustain in the steel strings. Experimental tests were performed to characterize string tension at pitch; mechanical strength and tuning stability using the universal testing machine; dimensional control and chemical composition analysis using the scanning electron microscope. The string dynamical behaviour characterization experiments, including frequency response, inharmonicity, transient response, damping phenomena and were made in a monochord test set-up designed and built in-house. Damping factor was determined for the fundamental frequency. As musicians are able to detect very small damping differences, an accurate a characterization of the damping phenomena for all harmonics was necessary. With that purpose, another improved monochord was set and a new system identification methodology applied. Due to the complexity of this task several adjustments were necessary until obtaining good experimental data. In a few cases, dynamical tests were repeated to detect any evolution in damping parameters after break-in period when according to players experience a new string sounds gradually less dull until reaching the typically brilliant timbre. Finally, each set of strings was played on one guitar by a distinguished player and recorded. The recordings which include individual notes, scales, chords and a study piece, will be analysed to potentially characterize timbre variations.

Keywords: damping factor, music wire, portuguese guitar, string dynamics

Procedia PDF Downloads 529
942 Effect of Humic Acids on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

Authors: Omkar Gaonkar, Indumathi Nambi, Suresh G. Kumar

Abstract:

The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of the behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment leads to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding soil aggregation and the interactions at soil solid-liquid interface.

Keywords: humic acids, natural organic matter, zeta potential, soil quality

Procedia PDF Downloads 220
941 Identifying Artifacts in SEM-EDS of Fouled RO Membranes Used for the Treatment of Brackish Groundwater Through Raman and ICP-MS Analysis

Authors: Abhishek Soti, Aditya Sharma, Akhilendra Bhushan Gupta

Abstract:

Fouled reverse osmosis membranes are primarily characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometer (EDS) for a detailed investigation of foulants; however, this has severe limitations on several accounts. Apart from inaccuracy in spectral properties and inevitable interferences and interactions between sample and instrument, misidentification of elements due to overlapping peaks is a significant drawback of EDS. This paper discusses this limitation by analyzing fouled polyamide RO membranes derived from community RO plants of Rajasthan treating brackish water via a combination of results obtained from EDS and Raman spectroscopy and cross corroborating with ICP-MS analysis of water samples prepared by dissolving the deposited salts. The anomalous behavior of different morphic forms of CaCO₃ in aqueous suspensions tends to introduce false reporting of the presence of certain heavy metals and rare earth metals in the scales of the fouled RO membranes used for treating brackish groundwater when analyzed using the commonly adopted techniques like SEM-EDS or Raman spectrometry. Peaks of CaCO₃ reflected in EDS spectra of the membrane were found to be misinterpreted as Scandium due to the automatic assignment of elements by the software. Similarly, the morphic forms merged with the dominant peak of CaCO₃ might be reflected as a single peak of Molybdenum in the Raman spectrum. A subsequent ICP-MS analysis of the deposited salts showed that both Sc and Mo were below detectable levels. It is always essential to cross-confirm the results through a destructive analysis method to avoid such interferences. It is further recommended to study different morphic forms of CaCO₃ scales, as they exhibit anomalous properties like reverse solubility with temperature and hence altered precipitation tendencies, for an accurate description of the composition of scales, which is vital for the smooth functioning of RO systems.

Keywords: reverse osmosis, foulant analysis, groundwater, EDS, artifacts

Procedia PDF Downloads 66
940 Acoustic Emission for Tool-Chip Interface Monitoring during Orthogonal Cutting

Authors: D. O. Ramadan, R. S. Dwyer-Joyce

Abstract:

The measurement of the interface conditions in a cutting tool contact is essential information for performance monitoring and control. This interface provides the path for the heat flux to the cutting tool. This elevate in the cutting tool temperature leads to motivate the mechanism of tool wear, thus affect the life of the cutting tool and the productivity. This zone is representative by the tool-chip interface. Therefore, understanding and monitoring this interface is considered an important issue in machining. In this paper, an acoustic emission (AE) technique was used to find the correlation between AE parameters and the tool-chip interface. For this reason, a response surface design (RSD) has been used to analyse and optimize the machining parameters. The experiment design was based on the face centered, central composite design (CCD) in the Minitab environment. According to this design, a series of orthogonal cutting experiments for different cutting conditions were conducted on a Triumph 2500 lathe machine to study the sensitivity of the acoustic emission (AE) signal to change in tool-chip contact length. The cutting parameters investigated were the cutting speed, depth of cut, and feed and the experiments were performed for 6082-T6 aluminium tube. All the orthogonal cutting experiments were conducted unlubricated. The tool-chip contact area was investigated using a scanning electron microscope (SEM). The results obtained in this paper indicate that there is a strong dependence of the root mean square (RMS) on the cutting speed, where the RMS increases with increasing the cutting speed. A dependence on the tool-chip contact length has been also observed. However there was no effect observed of changing the cutting depth and feed on the RMS. These dependencies have been clarified in terms of the strain and temperature in the primary and secondary shear zones, also the tool-chip sticking and sliding phenomenon and the effect of these mechanical variables on dislocation activity at high strain rates. In conclusion, the acoustic emission technique has the potential to monitor in situ the tool-chip interface in turning and consequently could indicate the approaching end of life of a cutting tool.

Keywords: Acoustic emission, tool-chip interface, orthogonal cutting, monitoring

Procedia PDF Downloads 465
939 Role of SiOx Interlayer on Lead Oxide Electrodeposited on Stainless Steel for Promoting Electrochemical Treatment of Wastewater Containing Textile Dye

Authors: Hanene Akrout, Ines Elaissaoui, Sabrina Grassini, Daniele Fulginiti, Latifa Bousselmi

Abstract:

The main objective of this work is to investigate the efficiency of depollution power related to PbO₂ layer deposited onto a stainless steel (SS) substrate with SiOx as interlayer. The elaborated electrode was used as anode for anodic oxidation of wastewater containing Amaranth dye, as recalcitrant organic pollutant model. SiOx interlayer was performed using Plasma Enhanced Chemical Vapor Deposition ‘PECVD’ in plasma fed with argon, oxygen, and tetraethoxysilane (TEOS, Si precursor) in different ratios, onto the SS substrate. PbO₂ layer was produced by pulsed electrodeposition on SS/SiOx. The morphological of different surfaces are depicted with Field Emission Scanning Electron Microscope (FESEM) and the composition of the lead oxide layer was investigated by X-Ray Diffractometry (XRD). The results showed that the SiOx interlayer with more rich oxygen content improved better the nucleation of β-PbO₂ form. Electrochemical Impedance Spectroscopy (EIS) measurements undertaken on different interfaces (at optimized conditions) revealed a decrease of Rfilm while CPE film increases for SiOx interlayer, characterized by a more inorganic nature and deposited in a plasma fed by higher O2-to-TEOS ratios. Quantitative determinations of the Amaranth dye degradation rate were performed in terms of colour and COD removals, reaching a 95% and an 80% respectively removal at pH = 2 in 300 min. Results proved the improvement of the degradation wastewater containing the amaranth dye. During the electrolysis, the Amaranth dye solution was sampled at 30 min intervals and analyzed by ‘High-performance Liquid Chromatography’ HPLC. The gradual degradation of the Amaranth dye confirmed by the decrease in UV absorption using the SS/SiOx(20:20:1)/PbO₂ anode, the reaction exhibited an apparent first-order kinetic for electrolysis time of 5 hours, with an initial rate constant of about 0.02 min⁻¹.

Keywords: electrochemical treatment, PbO₂ anodes, COD removal, plasma

Procedia PDF Downloads 176
938 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050

Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva

Abstract:

Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.

Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta

Procedia PDF Downloads 56
937 Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk

Authors: Ali Kadir, S. R. Mishra, M. Shamshuddin, O. Anwar Beg

Abstract:

Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations.

Keywords: bio-nanofluids, rotating disk bioreactors, Von Karman swirling flow, numerical solutions

Procedia PDF Downloads 132
936 Transit-Oriented Development as a Tool for Building Social Capital

Authors: Suneet Jagdev

Abstract:

Rapid urbanization has resulted in informal settlements on the periphery of nearly all big cities in the developing world due to lack of affordable housing options in the city. Residents of these communities have to travel long distances to get to work or search for jobs in these cities, and women, children and elderly people are excluded from urban opportunities. Affordable and safe public transport facilities can help them expand their possibilities. The aim of this research is to identify social capital as another important element of livable cities that can be protected and nurtured through transit-oriented development, as a tool to provide real resources that can help these transit-oriented communities become self-sustainable. Social capital has been referred to the collective value of all social networks and the inclinations that arise from these networks to do things for each other. It is one of the key component responsible to build and maintain democracy. Public spaces, pedestrian amenities and social equity are the other essential part of Transit Oriented Development models that will be analyzed in this research. The data has been collected through the analysis of several case studies, the urban design strategies implemented and their impact on the perception and on the community´s experience, and, finally, how these focused on the social capital. Case studies have been evaluated on several metrics, namely ecological, financial, energy consumption, etc. A questionnaire and other tools were designed to collect data to analyze the research objective and reflect the dimension of social capital. The results of the questionnaire indicated that almost all the participants have a positive attitude towards this dimensions of building a social capital with the aid of transit-oriented development. Statistical data of the identified key motivators against against demographic characteristics have been generated based on the case studies used for the paper. The findings suggested that there is a direct relation between urbanization, transit-oriented developments, and social capital.

Keywords: better opportunities, low-income settlements, social capital, social inclusion, transit oriented development

Procedia PDF Downloads 312
935 Response to Comprehensive Stress of Growing Greylag Geese Offered Alternative Fiber Sources

Authors: He Li Wen, Meng Qing Xiang, Li De Yong, Zhang Ya Wei, Ren Li Ping

Abstract:

Stress always exerts some extent adverse effects on the animal production, food safety and quality concerns. Stress is commonly-seen in livestock industry, but there is rare literature focusing on the effects of nutrition stress. What’s more, the research always concentrates on the effect of single stress additionally, there is scarce information about the stress effect on waterfowl like goose as they are commonly thought to be tolerant to stress. To our knowledge, it is not always true. The object of this study was to evaluate the response of growing Greylag geese offered different fiber sources to the comprehensive stress, primarily involving the procedures of fasting, transport, capture, etc. The birds were randomly selected to rear with the diets differing in fiber source, being corn straw silage (CSS), steam-exploded corn straw (SECS), steam-exploded wheat straw (SEWS), and steam-exploded rice straw (SERS), respectively. Blood samples designated for the determination of stress status were collected before (pre-stress ) and after (post-stress ) the stressors carried out. No difference (P>0.05) was found on the pre-stress blood parameters of growing Greylags fed alternative fiber sources. Irrespective of the dietary differences, the comprehensive stress decreased (P<0.01) the concentration of SOD and increased (P<0.01) that of CK. Between the dietary treatments, the birds fed CSS had a higher (P<0.05)post-stress concentration of MDA than those offered SECS, along with a similarity to those fed the other two fiber sources. There was no difference (P>0.05) found on the stress response of the birds fed different fiber sources. In conclusion, SOD and CK concentration in blood may be more sensitive in indicating stress status and dietary fiber source exerted no effect on the stress response of growing Greylags. There is little chance to improve the stress status by ingesting different fiber sources.

Keywords: blood parameter, fiber source, Greylag goose, stress

Procedia PDF Downloads 492
934 Synthesis of Highly Stable Near-Infrared FAPbI₃@TEOS Perovskite and its Applications in NIR Light-Emitting Diodes for Bioimaging

Authors: Nasrud Din, Fawad Saeed, Sajid Hussain, Rai Muhammad Dawoo, Qasim Khan, Lei Wei

Abstract:

The continuously increasing external quantum efficiencies of Perovskite light-emitting diodes (LEDs) have received significant interest in the scientific community. The need for monitoring and medical diagnostics has experienced a steady growth in recent years, primarily caused by older people and an increasing number of heart attacks, tumors, and cancer disorders among patients. The application of Perovskite near-infrared light-emitting diode (PeNIRLEDs) has exhibited considerable efficacy in bioimaging, particularly in the visualization and examination of blood arteries, blood clots, and tumors. PeNIRLEDs exhibit exciting potential in the field of blood vessel imaging because of their advantageous attributes, including improved depth penetration and less scattering in comparison to visible light. In this study, we synthesized FAPbI₃ Perovskite doped with different concentrations of 5-Aminovaleric acid (5-AVA) 1-6 mg. The incorporation of 5-AVA as a dopant during the FAPbI₃ Perovskite formation influences the FAPbI3 Perovskite’s structural and optical properties. While improving the FAPbI3 Perovskite’s stability, photoluminescence efficiency, and charge transport characteristics. We found a resulting PL emission peak wavelength of 850 nm and bandwidth of 44 nm, along with a calculated quantum yield of 75%. The incorporation of 5-AVA-modified FAPbI₃ Perovskite into LEDs will show promising results, enhancing device efficiency, color purity, and stability. Making it suitable for various medical applications, including subcutaneous deep vein imaging, blood flow visualization, and tumor illumination.

Keywords: FAPbI₃ perovskite, near-infrared light-emitting diode, bioimaging, blood flow visualization, radiance, light-emitting diode (LED).

Procedia PDF Downloads 16
933 A Framework on Data and Remote Sensing for Humanitarian Logistics

Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini

Abstract:

Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.

Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making

Procedia PDF Downloads 355
932 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis

Authors: Pratima Kumari, Sukha Ranjan Samadder

Abstract:

This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.

Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach

Procedia PDF Downloads 30
931 Genesis of Talc Bodies in Relation to the Mafic-Ultramafic Rocks around Wonu, Ibadan-Apomu Area, Southwestern Nigeria

Authors: Morenike Abimbola Adeleye, Anthony Temidayo Bolarinwa

Abstract:

The genesis of talc bodies around Wonu, Ibadan-Apomu area, southwestern Nigeria, has been speculative due to inadequate compositional data on the talc and the mafic-ultramafic protoliths. Petrography, morphology, using scanning electron microscope, mineral chemistry, X-ray diffraction, and major, trace and rare-earth element compositions of the talc and the mafic-ultramafic in the area were undertaken with a view to determine the genesis of the talc bodies. Fine-grained amphibolite and lherzolite are the major mafic-ultramafic rocks in the study area. The amphibolite is fine-grained, composed of amphiboles, pyroxenes plagioclase, K-feldspar, ilmenite, magnetite, and garnet. The lherzolite and talc are composed of olivines, pyroxenes, amphiboles, and plagioclase. Alteration minerals include serpentine, amesite, talc, Cr-bearing clinochlore, and ferritchromite. Cr-spinel, pyrite, and magnetite are the accessory minerals present. Alteration of olivines, pyroxenes, and amphiboles to talc and chlinochlore; and spinel to ferritchchromite by hydrothermal (H₂O-CO₂-Cl-HF) fluids, provided by the granitic intrusions in the area, showed retrograde metasomatism of amphibolites to greenschist facies at 500-550ºC. This led to the formation of talc, amesite, anthophyllite, actinolite, and tremolite. The Al₂O₃-Fe₂O₃+TiO₂-MgO discrimination diagram suggests tholeiitic protolith for the amphibolite and komatitic protolith for the lherzolite. The lherzolite has flat rare-earth element patterns typical of komatiites and dunites. The Al₂O₃/TiO₂ ratios, Ce/Nb vs. Th/Nb, Cr-TiO₂, TiO₂ vs. Al₂O₃, and Nd vs. Nb discrimination diagrams indicated that the talcs are from two-parent sources: altered metacarbonates and tholeiitic basalts (amphibolites) to komatitic basalts (lherzolites).

Keywords: amphibolites, lherzolites, talc, komatiite

Procedia PDF Downloads 188
930 Porosity and Surface Chemistry of Functionalized Carbonaceous Materials from Date Palm Leaflets

Authors: El-Said I. El-Shafey, Syeda Naheed F. Ali, Saleh S. Al-Busafi, Haider A. J. Al-Lawati

Abstract:

Date palm leaflets were utilized as a precursor for activated carbon (AC) preparation using KOH activation. AC produced was oxidized using nitric acid producing oxidized activated carbon (OAC). OAC that possesses acidic surface was surface functionalized to produce basic activated carbons using linear diamine compounds (ethylene diamine and propylene diamine). OAC was also functionalized to produce hydrophobic activated carbons using ethylamine (EA) and aniline (AN). Dehydrated carbon was also prepared from date palm leaflets using sulfuric acid dehydration/ oxidation and was surface functionalized in the same way as AC. Nitric acid oxidation was not necessary for DC as it is acidic carbon. The surface area of AC is high (823 m2/g) with microporosity domination, however, after oxidation and surface functionalization, both the surface area and surface microporosity decrease tremendously. DC surface area was low (15 m2/g) with mesoporosity domination. Surface functionalization has decreased the surface area of activated carbons. FTIR spectra show that -COOH group on DC and OAC almost disappeared after surface functionalization. The surface chemistry of all carbons produced was tested for pHzpc, basic sites, boehm titration, thermogravimetric analysis and zeta potential measurement. Scanning electron microscopy and energy dispersive spectroscopy in addition to CHN elemental analysis were also carried out. DC and OAC possess low pHzpc and high surface functionality, however, basic and hydrophobic carbons possess high pHzpc and low surface functionality. The different behavior of carbons is related to their different surface chemistry. Methylene blue adsorption was found to be faster on hydrophobic carbons based on AC and DC. The Larger adsorption capacity of methylene blue was found for hydrophobic carbons. Dominating adsorption forces of methylene blue varies from carbon to another depending on its surface nature. Sorption forces include hydrophobic forces, H-bonding, electrostatic interactions and van der Waals forces.

Keywords: carbon, acidic, basic, hydrophobic

Procedia PDF Downloads 262
929 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 102
928 Highly Responsive p-NiO/n-rGO Heterojunction Based Self-Powered UV Photodetectors

Authors: P. Joshna, Souvik Kundu

Abstract:

Detection of ultraviolet (UV) radiation is very important as it has exhibited a profound influence on humankind and other existences, including military equipment. In this work, a self-powered UV photodetector was reported based on oxides heterojunctions. The thin films of p-type nickel oxide (NiO) and n-type reduced graphene oxide (rGO) were used for the formation of p-n heterojunction. Low-Cost and low-temperature chemical synthesis was utilized to prepare the oxides, and the spin coating technique was employed to deposit those onto indium doped tin oxide (ITO) coated glass substrates. The top electrode platinum was deposited utilizing physical vapor evaporation technique. NiO offers strong UV absorption with high hole mobility, and rGO prevents the recombination rate by separating electrons out from the photogenerated carriers. Several structural characterizations such as x-ray diffraction, atomic force microscope, scanning electron microscope were used to study the materials crystallinity, microstructures, and surface roughness. On one side, the oxides were found to be polycrystalline in nature, and no secondary phases were present. On the other side, surface roughness was found to be low with no pit holes, which depicts the formation of high-quality oxides thin films. Whereas, x-ray photoelectron spectroscopy was employed to study the chemical compositions and oxidation structures. The electrical characterizations such as current-voltage and current response were also performed on the device to determine the responsivity, detectivity, and external quantum efficiency under dark and UV illumination. This p-n heterojunction device offered faster photoresponse and high on-off ratio under 365 nm UV light illumination of zero bias. The device based on the proposed architecture shows the efficacy of the oxides heterojunction for efficient UV photodetection under zero bias, which opens up a new path towards the development of self-powered photodetector for environment and health monitoring sector.

Keywords: chemical synthesis, oxides, photodetectors, spin coating

Procedia PDF Downloads 105
927 Evaluation of κ -Carrageenan Hydrogel Efficiency in Wound-Healing

Authors: Ali Ayatic, Emad Mozaffari, Bahareh Tanhaei, Maryam Khajenoori, Saeedeh Movaghar Khoshkho, Ali Ayati

Abstract:

The abuse of antibiotics, such as tetracycline (TC), is a great global threat to people and the use of topical antibiotics is a promising tact that can help to solve this problem. Antibiotic therapy is often appropriate and necessary for acute wound infections, while topical tetracycline can be highly efficient in improving the wound healing process in diabetics. Due to the advantages of drug-loaded hydrogels as wound dressing, such as ease of handling, high moisture resistance, excellent biocompatibility, and the ability to activate immune cells to speed wound healing, it was found as an ideal wound treatment. In this work, the tetracycline-loaded hydrogels combining agar (AG) and κ-carrageenan (k-CAR) as polymer materials were prepared, in which span60 surfactant was introduced inside as a drug carrier. The Field Emission Scanning Electron Microscopes (FESEM) and Fourier-transform infrared spectroscopy (FTIR) techniques were employed to provide detailed information on the morphology, composition, and structure of fabricated drug-loaded hydrogels and their mechanical properties, and hydrogel permeability to water vapor was investigated as well. Two types of gram-negative and gram-positive bacteria were used to explore the antibacterial properties of prepared tetracycline-contained hydrogels. Their swelling and drug release behavior was studied using the changing factors such as the ratio of polysaccharides (MAG/MCAR), the span60 surfactant concentration, potassium chloride (KCl) concentration and different release media (deionized water (DW), phosphate-buffered saline (PBS), and simulated wound fluid (SWF)) at different times. Finally, the kinetic behavior of hydrogel swelling was studied. Also, the experimental data of TC release to DW, PBS, and SWF using various mathematical models such as Higuchi, Korsmeyer-Peppas, zero-order, and first-order in the linear and nonlinear modes were evaluated.

Keywords: drug release, hydrogel, tetracycline, wound healing

Procedia PDF Downloads 62
926 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers

Authors: Linda Boussaid, Farid Brahim Belaribi

Abstract:

The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixtures

Keywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers

Procedia PDF Downloads 72
925 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 382
924 Realizing Teleportation Using Black-White Hole Capsule Constructed by Space-Time Microstrip Circuit Control

Authors: Mapatsakon Sarapat, Mongkol Ketwongsa, Somchat Sonasang, Preecha Yupapin

Abstract:

The designed and performed preliminary tests on a space-time control circuit using a two-level system circuit with a 4-5 cm diameter microstrip for realistic teleportation have been demonstrated. It begins by calculating the parameters that allow a circuit that uses the alternative current (AC) at a specified frequency as the input signal. A method that causes electrons to move along the circuit perimeter starting at the speed of light, which found satisfaction based on the wave-particle duality. It is able to establish the supersonic speed (faster than light) for the electron cloud in the middle of the circuit, creating a timeline and propulsive force as well. The timeline is formed by the stretching and shrinking time cancellation in the relativistic regime, in which the absolute time has vanished. In fact, both black holes and white holes are created from time signals at the beginning, where the speed of electrons travels close to the speed of light. They entangle together like a capsule until they reach the point where they collapse and cancel each other out, which is controlled by the frequency of the circuit. Therefore, we can apply this method to large-scale circuits such as potassium, from which the same method can be applied to form the system to teleport living things. In fact, the black hole is a hibernation system environment that allows living things to live and travel to the destination of teleportation, which can be controlled from position and time relative to the speed of light. When the capsule reaches its destination, it increases the frequency of the black holes and white holes canceling each other out to a balanced environment. Therefore, life can safely teleport to the destination. Therefore, there must be the same system at the origin and destination, which could be a network. Moreover, it can also be applied to space travel as well. The design system will be tested on a small system using a microstrip circuit system that we can create in the laboratory on a limited budget that can be used in both wired and wireless systems.

Keywords: quantum teleportation, black-white hole, time, timeline, relativistic electronics

Procedia PDF Downloads 54
923 Highly Efficient Ca-Doped CuS Counter Electrodes for Quantum Dot Sensitized Solar Cells

Authors: Mohammed Panthakkal Abdul Muthalif, Shanmugasundaram Kanagaraj, Jumi Park, Hangyu Park, Youngson Choe

Abstract:

The present study reports the incorporation of calcium ions into the CuS counter electrodes (CEs) in order to modify the photovoltaic performance of quantum dot-sensitized solar cells (QDSSCs). Metal ion-doped CuS thin film was prepared by the chemical bath deposition (CBD) method on FTO substrate and used directly as counter electrodes for TiO₂/CdS/CdSe/ZnS photoanodes based QDSSCs. For the Ca-doped CuS thin films, copper nitrate and thioacetamide were used as anionic and cationic precursors. Calcium nitrate tetrahydrate was used as doping material. The surface morphology of Ca-doped CuS CEs indicates that the fragments are uniformly distributed, and the structure is densely packed with high crystallinity. The changes observed in the diffraction patterns suggest that Ca dopant can introduce increased disorder into CuS material structure. EDX analysis was employed to determine the elemental identification, and the results confirmed the presence of Cu, S, and Ca on the FTO glass substrate. The photovoltaic current density – voltage characteristics of Ca-doped CuS CEs shows the specific improvements in open circuit voltage decay (Voc) and short-circuit current density (Jsc). Electrochemical impedance spectroscopy results display that Ca-doped CuS CEs have greater electrocatalytic activity and charge transport capacity than bare CuS. All the experimental results indicate that 20% Ca-doped CuS CE based QDSSCs exhibit high power conversion efficiency (η) of 4.92%, short circuit current density of 15.47 mA cm⁻², open circuit photovoltage of 0.611 V, and fill factor (FF) of 0.521 under illumination of one sun.

Keywords: Ca-doped CuS counter electrodes, surface morphology, chemical bath deposition method, electrocatalytic activity

Procedia PDF Downloads 138