Search results for: energy balance.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3174

Search results for: energy balance.

2844 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks

Authors: A. Allirani, M. Suganthi

Abstract:

Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.

Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696
2843 Performance Evaluation of Single Basin Solar Still

Authors: Prem Singh, Jagdeep Singh

Abstract:

In an attempt to investigate the performance of single basin solar still for climate conditions of Ludhiana a single basin solar still was designed, fabricated and tested. The energy balance equations for various parts of the still are solved by Gauss-Seidel iteration method. Computer model was made and experimentally validated. The validated computer model was used to estimate the annual distillation yield and performance ratio of the still for Ludhiana. The Theoretical and experimental distillation yield were 4318.79 ml and 3850 ml respectively for the typical day. The predicted distillation yield was 12.5% higher than the experimental yield. The annual distillation yield per square metre aperture area and annual performance ratio for single basin solar still is 1095 litres and 0.43 respectively. The payback period for micro-stepped solar still is 2.5 years.

Keywords: Solar distillation, solar still, single basin, still.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050
2842 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis

Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral

Abstract:

Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.

Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
2841 Visualising Energy Efficiency Landscape

Authors: Hairulliza M. Judi, Soon Y. Chee

Abstract:

This paper discusses the landscape design that could increase energy efficiency in a house. By planting trees in a house compound, the tree shades prevent direct sunlight from heating up the building, and it enables cooling off the surrounding air. The requirement for air-conditioning could be minimized and the air quality could be improved. During the life time of a tree, the saving cost from the mentioned benefits could be up to US $ 200 for each tree. The project intends to visually describe the landscape design in a house compound that could enhance energy efficiency and consequently lead to energy saving. The house compound model was developed in three dimensions by using AutoCAD 2005, the animation was programmed by using LightWave 3D softwares i.e. Modeler and Layout to display the tree shadings in the wall. The visualization was executed on a VRML Pad platform and implemented on a web environment.

Keywords: Tree planting, tree shading, energy efficiency, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
2840 Shading Percentage Effects on Energy Consumption for Bahraini Residential Buildings

Authors: Saad F. Al Nuaimi

Abstract:

Energy consumption is a very important topic these days especially regarding air conditioning in residential buildings, since this takes the biggest amount of energy in buildings total consumption, residential buildings constitute the biggest percentage of energy consumption in Bahrain. This research reflects on the effects of shading percentage in different solar orientations on the energy consumption inside residential buildings (domestic dwellings). The research as found that, there are different effects of shading in changing building orientation: • 0.69% for the shading percentage 25% when the building is oriented to the north (0º); • 18.59% for 75% of shading in north-west orientation (325º); • The best effect for shading is in north-west orientation (315º); • The less effect for shading was in case of the building orientation is the north (0º).

Keywords: Bahraini buildings, Building shading, energy consumption, residential buildings, shading effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
2839 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building

Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert

Abstract:

Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.

Keywords: Construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, DesignBuilder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
2838 Investigating the Effect of Refinancing on Financial Behavior of Energy Efficiency Projects

Authors: Zohreh Soltani, Seyedmohammadhossein Hosseinian

Abstract:

Reduction of energy consumption in built infrastructure, through the installation of energy-efficient technologies, is a major approach to achieving sustainability. In practice, the viability of energy efficiency projects strongly depends on the cost reimbursement and profitability. These projects are subject to failure if the actual cost savings do not reimburse the project cost promptly. In such cases, refinancing could be a solution to benefit from the long-term returns of the project, if implemented wisely. However, very little is still known about the effect of refinancing options on financial performance of energy efficiency projects. In order to fill this gap, the present study investigates the financial behavior of energy efficiency projects with focus on refinancing options, such as Leveraged Loans. A System Dynamics (SD) model is introduced, and the model application is presented using an actual case-study data. The case study results indicate that while high-interest start-ups make using Leveraged Loan inevitable, refinancing can rescue the project and bring about profitability. This paper also presents some managerial implications of refinancing energy efficiency projects based on the case-study analysis. Results of this study help to implement financially viable energy efficiency projects so that the community could benefit from their environmental advantages widely.

Keywords: Energy efficiency projects, leveraged loan, refinancing, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
2837 Efficient Sensors Selection Algorithm in Cyber Physical System

Authors: Ma-Wubin, Deng-Su, Huang Hongbin, Chen-Jian, Wu-Yahun, Li-zhuo

Abstract:

Cyber physical system (CPS) for target tracking, military surveillance, human health monitoring, and vehicle detection all require maximizing the utility and saving the energy. Sensor selection is one of the most important parts of CPS. Sensor selection problem (SSP) is concentrating to balance the tradeoff between the number of sensors which we used and the utility which we will get. In this paper, we propose a performance constrained slide windows (PCSW) based algorithm for SSP in CPS. we present results of extensive simulations that we have carried out to test and validate the PCSW algorithms when we track a target, Experiment shows that the PCSW based algorithm improved the performance including selecting time and communication times for selecting.

Keywords: Cyber physical system, sensor selection problem, PCSW based algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
2836 A New Method for Extracting Ocean Wave Energy Utilizing the Wave Shoaling Phenomenon

Authors: Shafiq R. Qureshi, Syed Noman Danish, Muhammad Saeed Khalid

Abstract:

Fossil fuels are the major source to meet the world energy requirements but its rapidly diminishing rate and adverse effects on our ecological system are of major concern. Renewable energy utilization is the need of time to meet the future challenges. Ocean energy is the one of these promising energy resources. Threefourths of the earth-s surface is covered by the oceans. This enormous energy resource is contained in the oceans- waters, the air above the oceans, and the land beneath them. The renewable energy source of ocean mainly is contained in waves, ocean current and offshore solar energy. Very fewer efforts have been made to harness this reliable and predictable resource. Harnessing of ocean energy needs detail knowledge of underlying mathematical governing equation and their analysis. With the advent of extra ordinary computational resources it is now possible to predict the wave climatology in lab simulation. Several techniques have been developed mostly stem from numerical analysis of Navier Stokes equations. This paper presents a brief over view of such mathematical model and tools to understand and analyze the wave climatology. Models of 1st, 2nd and 3rd generations have been developed to estimate the wave characteristics to assess the power potential. A brief overview of available wave energy technologies is also given. A novel concept of on-shore wave energy extraction method is also presented at the end. The concept is based upon total energy conservation, where energy of wave is transferred to the flexible converter to increase its kinetic energy. Squeezing action by the external pressure on the converter body results in increase velocities at discharge section. High velocity head then can be used for energy storage or for direct utility of power generation. This converter utilizes the both potential and kinetic energy of the waves and designed for on-shore or near-shore application. Increased wave height at the shore due to shoaling effects increases the potential energy of the waves which is converted to renewable energy. This approach will result in economic wave energy converter due to near shore installation and more dense waves due to shoaling. Method will be more efficient because of tapping both potential and kinetic energy of the waves.

Keywords: Energy Utilizing, Wave Shoaling Phenomenon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618
2835 Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach

Authors: Azadeh Maroufmashat, Sourena Sattari Khavas, Halle Bakhteeyar

Abstract:

Multi-energy systems will enhance the system reliability and power quality. This paper presents an integrated approach for the design and operation of distributed energy resources (DER) systems, based on energy hub modeling. A multi-objective optimization model is developed by considering an integrated view of electricity and natural gas network to analyze the optimal design and operating condition of DER systems, by considering two conflicting objectives, namely, minimization of total cost and the minimization of environmental impact which is assessed in terms of CO2 emissions. The mathematical model considers energy demands of the site, local climate data, and utility tariff structure, as well as technical and financial characteristics of the candidate DER technologies. To provide energy demands, energy systems including photovoltaic, and co-generation systems, boiler, central power grid are considered. As an illustrative example, a hotel in Iran demonstrates potential applications of the proposed method. The results prove that increasing the satisfaction degree of environmental objective leads to increased total cost.

Keywords: Multi objective optimization, DER systems, Energy hub, Cost, CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
2834 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems

Authors: Jalil Boudjadar

Abstract:

Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.

Keywords: Time-critical systems, multicore systems, schedulability analysis, performance, memory interference, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413
2833 Assessment of Energy Demand Considering Different Model Simulations in a Low Energy Demand House

Authors: M. Cañada-Soriano, C. Aparicio-Fernández, P. Sebastián Ferrer Gisbert, M. Val Field, J.-L. Vivancos-Bono

Abstract:

The lack of insulation along with the existence of air leakages constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, the Blower Door test can be used. It is a standardized procedure that determines the airtightness of a space by characterizing the rate of air leakages through the envelope surface. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place such as the infrared thermography. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house, refurbished under the Passive House standard, using the Blower Door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to estimate the energy demand in different scenarios. In this sense, a sequential implementation of three different energy improvement measures (insulation thickness, glazing type and infiltrations) have been analyzed.

Keywords: Airtightness, blower door, TRNSYS, infrared thermography, energy demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150
2832 Bioclimatic Design, Evaluation of Energy Behavior and Energy-Saving Interventions at the Theagenio Cancer Hospital

Authors: Emmanouel Koumoulas, Aikaterini Rokkou, Marios Moschakis

Abstract:

Theagenio" in Thessaloniki exists and works for three centuries now as a hospital. Since 1975, it has been operating as an Integrated Special Cancer Hospital and since 1985 it has been integrated into the National Health System. "Theagenio" Cancer Hospital is located at the central web of Thessaloniki residential complex and consists of two buildings, the "Symeonidio Research Center", which was completed in 1962 and the Nursing Ward, a project that was later completed in 1975. This paper examines the design of the Hospital Unit according to the requirements of the energy design of buildings. Initially, the energy characteristics of the Hospital are recorded, followed by a detailed presentation of the electromechanical installations. After the existing situation has been captured and with the help of the software TEE-KENAK, different scenarios for the energy upgrading of the buildings have been studied. Proposals for upgrading concern both the shell, e.g. installation of external thermal insulation, replacement of frames, addition of shading systems, etc. as well as electromechanical installations, e.g. use of ceiling fans, improvements in heating and cooling systems, interventions in lighting, etc. The simulation calculates the future energy status of the buildings and presents the economic benefits of the proposed interventions with reference to the environmental profits that arise.

Keywords: Energy consumption in hospitals, energy saving interventions, energy upgrading, hospital facilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
2831 Wireless Building Monitoring and Control System

Authors: J.-P. Skön, M. Johansson, O. Kauhanen, M. Raatikainen, K. Leiviskä, M. Kolehmainen

Abstract:

The building sector is the largest energy consumer and CO2 emitter in the European Union (EU) and therefore the active reduction of energy consumption and elimination of energy wastage are among the main goals in it. Healthy housing and energy efficiency are affected by many factors which set challenges to monitoring, control and research of indoor air quality (IAQ) and energy consumption, especially in old buildings. These challenges include measurement and equipment costs, for example. Additionally, the measurement results are difficult to interpret and their usage in the ventilation control is also limited when taking into account the energy efficiency of housing at the same time. The main goal of this study is to develop a cost-effective building monitoring and control system especially for old buildings. The starting point or keyword of the development process is a wireless system; otherwise the installation costs become too high. As the main result, this paper describes an idea of a wireless building monitoring and control system. The first prototype of the system has been installed in 10 residential buildings and in 10 school buildings located in the City of Kuopio, Finland.

Keywords: Energy efficiency, Indoor air quality, Monitoring system, Building automation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
2830 Eco-friendly and Cleaner Process for Isolation of Essential Oil Using Photovoltaic Energy: Experimental and Theoretical Study

Authors: Hanen Nafaa, Maissa Farhat, Sina Ouriemi, Sbita Lassaad

Abstract:

The use of renewable energies is growing significantly worldwide. Faced with the increasing demand for electrical energy, mainly for the needs of remote, deserted and mountainous regions, numerous applications use photovoltaic energy. In this sense, the proposed study concerns a mathematical modeling and an experimental validation for the recovery of essential oil by a steam distillation system using photovoltaic energy. In this paper, we proceed to a modeling of the solar system that includes a photovoltaic (PV) generator with an electronic power converter allowing a continuation of the optimum operating point. The results obtained are promising and are validated practically.

Keywords: Boiling in tubes, DC-DC converter, desalination, maximum power point tracking command, photovoltaic energy, solar generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
2829 Design of Smart Energy Monitoring System for Green IT Life

Authors: Min Goo Lee, Yong Kuk Park, Kyung Kwon Jung, Jun Jae Yoo

Abstract:

This paper describes the smart energy monitoring system with a wireless sensor network for monitoring of electrical usage in smart house. Proposed system is composed of wireless plugs and energy control wallpad server. The wireless plug integrates an AC power socket, a relay to switch the socket ON/OFF, a Hall effect sensor to sense current of load appliance and a Kmote. The Kmote is a wireless communication interface based on TinyOS. We evaluated wireless plug in a laboratory, analyzed and presented energy consumption data from electrical appliances for 3 months in home.

Keywords: smart house, energy monitoring, wireless plug, wireless sensor network, current consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
2828 Review of Various Designs and Development in Hydropower Turbines

Authors: F. Behrouzi, A. Maimun, M. Nakisa

Abstract:

The growth of population, rising fossil fuel prices (limited and decreasing day by day), pollution problem due to use of fossil fuels and increasing electrical demand are important factors that encourage the use of green and renewable energy technologies. Among the different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines. Currently, researchers mainly focused on design and development of different kind of turbines to capture hydropower to generate electricity as clean and reliable energy. This paper is a review of the status of research on water current turbines carried out to generate electricity from hydrokinetic energy especially in places where there is no electricity, but there is access to flowing water.

Keywords: Turbines, Renewable Energy, Hydropower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4508
2827 Architecture Performance-Related Design Based on Graphic Parameterization

Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding

Abstract:

Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.

Keywords: Graphic parameterization, green building design, mathematical model, U-shaped buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798
2826 1-D Modeling of Hydrate Decomposition in Porous Media

Authors: F. Esmaeilzadeh, M. E. Zeighami, J. Fathi

Abstract:

This paper describes a one-dimensional numerical model for natural gas production from the dissociation of methane hydrate in hydrate-capped gas reservoir under depressurization and thermal stimulation. Some of the hydrate reservoirs discovered are overlying a free-gas layer, known as hydrate-capped gas reservoirs. These reservoirs are thought to be easiest and probably the first type of hydrate reservoirs to be produced. The mathematical equations that can be described this type of reservoir include mass balance, heat balance and kinetics of hydrate decomposition. These non-linear partial differential equations are solved using finite-difference fully implicit scheme. In the model, the effect of convection and conduction heat transfer, variation change of formation porosity, the effect of using different equations of state such as PR and ER and steam or hot water injection are considered. In addition distributions of pressure, temperature, saturation of gas, hydrate and water in the reservoir are evaluated. It is shown that the gas production rate is a sensitive function of well pressure.

Keywords: Hydrate reservoir, numerical modeling, depressurization, thermal stimulation, gas generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
2825 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: Electric vehicles, fuel cell, battery, regenerative braking, energy management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
2824 Energy Consumption in Forward Osmosis Desalination Compared to other Desalination Techniques

Authors: Ali Shoeb Moon, Moonyong Lee

Abstract:

The draw solute separation process in Forward Osmosis desalination was simulated in Aspen Plus chemical process modeling software, to estimate the energy consumption and compare it with other desalination processes, mainly the Reverse Osmosis process which is currently most prevalent. The electrolytic chemistry for the system was retrieved using the Elec – NRTL property method in the Aspen Plus database. Electrical equivalent of energy required in the Forward Osmosis desalination technique was estimated and compared with the prevalent desalination techniques.

Keywords: Desalination, Energy, Forward Osmosis, Separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3992
2823 An Optimization Model for Natural Gas Supply Chain through a Cost Approach under Uncertainty

Authors: A. Azadeh, Z. Raoofi

Abstract:

Natural gas, as one of the most important sources of energy for many of the industrial and domestic users all over the world, has a complex, huge supply chain which is in need of heavy investments in all the phases of exploration, extraction, production, transportation, storage and distribution. The main purpose of supply chain is to meet customers’ need efficiently and with minimum cost. In this study, with the aim of minimizing economic costs, different levels of natural gas supply chain in the form of a multi-echelon, multi-period fuzzy linear programming have been modeled. In this model, different constraints including constraints on demand satisfaction, capacity, input/output balance and presence/absence of a path have been defined. The obtained results suggest efficiency of the recommended model in optimal allocation and reduction of supply chain costs.

Keywords: Cost Approach, Fuzzy Theory, Linear Programming, Natural Gas Supply Chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
2822 The Research of Taiwan Green Building Materials (GBM) system and GBM Eco-Efficiency Model on Climate Change

Authors: Ting-Ting Hsieh, Che-Ming Chiang, Ming-Chin Ho, Kwang-Pang Lai

Abstract:

The globe Sustainability has become the subject of international attention, the key reason is that global climate change. Climate and disasters around the abnormal frequency multiplier, the global temperature of the catastrophe and disaster continue to occur throughout the world, as well as countries around the world. Currently there are many important international conferences and policy, it is a "global environmental sustainability " and "living human health " as the goal of development, including the APEC 2007 meeting to "climate Clean Energy" as the theme Sydney Declaration, 2008 World Economic Forum's "Carbon - promote Cool Earth energy efficiency improvement project", the EU proposed "Green Idea" program, the Japanese annual policy, "low-carbon society, sustainable eco-city environment (Eco City) "And from 2009 to 2010 to promote the "Eco-Point" to promote green energy and carbon reduction products .And the 2010 World Climate Change Conference (COP16 United Nations Climate Change Conference Copenhagen), the world has been the subject of Negative conservative "Environmental Protection ", "save energy consumption, " into a positive response to the "Sustainable " and" LOHAS", while Taiwan has actively put forward eco-cities, green building, green building materials and other related environmental response Measures, especially green building construction environment that is the basis of factors, the most widely used application level, and direct contact with human health and the key to sustainable planet. "Sustainable development "is a necessary condition for continuation of the Earth, "healthy and comfortable" is a necessary condition for the continuation of life, and improve the "quality" is a necessary condition for economic development, balance between the three is "to enhance the efficiency of ", According to the World Business Council for Sustainable Development (WBCSD) for the "environmental efficiency "(Eco-Efficiency) proposed: " the achievement of environmental efficiency, the price to be competitive in the provision of goods or services to meet people's needs, improve living Quality at the same time, the goods or services throughout the life cycle. Its impact on the environment and natural resource utilization and gradually reduced to the extent the Earth can load. "whichever is the economy "Economic" and " Ecologic". The research into the methodology to obtain the Taiwan Green Building Material Labeling product as the scope of the study, by investigating and weight analysis to explore green building environmental load (Ln) factor and the Green Building Quality (Qn) factor to Establish green building environmental efficiency assessment model (GBM Eco-Efficiency). And building materials for healthy green label products for priority assessment object, the object is set in the material evidence for the direct response to the environmental load from the floor class-based, explicit feedback correction to the Green Building environmental efficiency assessment model, "efficiency " as a starting point to achieve balance between human "health "and Earth "sustainable development of win-win strategy. The study is expected to reach 1.To establish green building materials and the quality of environmental impact assessment system, 2. To establish value of GBM Eco-Efficiency model, 3. To establish the GBM Eco-Efficiency model for application of green building material feedback mechanisms.

Keywords: Climate Change, Green Building Material (GBM), Eco-Efficiency, Life Cycle Assessment, Performance Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
2821 Explicit Solution of an Investment Plan for a DC Pension Scheme with Voluntary Contributions and Return Clause under Logarithm Utility

Authors: Promise A. Azor, Avievie Igodo, Esabai M. Ase

Abstract:

The paper merged the return of premium clause and voluntary contributions to investigate retirees’ investment plan in a defined contributory (DC) pension scheme with a portfolio comprising of a risk-free asset and a risky asset whose price process is described by geometric Brownian motion (GBM). The paper considers additional voluntary contributions paid by members, charge on balance by pension fund administrators and the mortality risk of members of the scheme during the accumulation period by introducing return of premium clause. To achieve this, the Weilbull mortality force function is used to establish the mortality rate of members during accumulation phase. Furthermore, an optimization problem from the Hamilton Jacobi Bellman (HJB) equation is obtained using dynamic programming approach. Also, the Legendre transformation method is used to transform the HJB equation which is a nonlinear partial differential equation to a linear partial differential equation and solves the resultant equation for the value function and the optimal distribution plan under logarithm utility function. Finally, numerical simulations of the impact of some important parameters on the optimal distribution plan were obtained and it was observed that the optimal distribution plan is inversely proportional to the initial fund size, predetermined interest rate, additional voluntary contributions, charge on balance and instantaneous volatility.

Keywords: Legendre transform, logarithm utility, optimal distribution plan, return clause of premium, charge on balance, Weibull mortality function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131
2820 System-Level Energy Estimation for SoC based on the Dynamic Behavior of Embedded Software

Authors: Yoshifumi Sakamoto, Kouichi Ono, Takeo Nakada, Yousuke Kubo, Hiroto Yasuura

Abstract:

This paper describes a system-level SoC energy consumption estimation method based on a dynamic behavior of embedded software in the early stages of the SoC development. A major problem of SOC development is development rework caused by unreliable energy consumption estimation at the early stages. The energy consumption of an SoC used in embedded systems is strongly affected by the dynamic behavior of the software. At the early stages of SoC development, modeling with a high level of abstraction is required for both the dynamic behavior of the software, and the behavior of the SoC. We estimate the energy consumption by a UML model-based simulation. The proposed method is applied for an actual embedded system in an MFP. The energy consumption estimation of the SoC is more accurate than conventional methods and this proposed method is promising to reduce the chance of development rework in the SoC development. ∈

Keywords: SoC, Embedded Sytem, Energy Consumption, Dynamic behavior, UML, Modeling, Model-based simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
2819 Modified Energy and Link Failure Recovery Routing Algorithm for Wireless Sensor Network

Authors: M. Jayekumar, V. Nagarajan

Abstract:

Wireless sensor network finds role in environmental monitoring, industrial applications, surveillance applications, health monitoring and other supervisory applications. Sensing devices form the basic operational unit of the network that is self-battery powered with limited life time. Sensor node spends its limited energy for transmission, reception, routing and sensing information. Frequent energy utilization for the above mentioned process leads to network lifetime degradation. To enhance energy efficiency and network lifetime, we propose a modified energy optimization and node recovery post failure method, Energy-Link Failure Recovery Routing (E-LFRR) algorithm. In our E-LFRR algorithm, two phases namely, Monitored Transmission phase and Replaced Transmission phase are devised to combat worst case link failure conditions. In Monitored Transmission phase, the Actuator Node monitors and identifies suitable nodes for shortest path transmission. The Replaced Transmission phase dispatches the energy draining node at early stage from the active link and replaces it with the new node that has sufficient energy. Simulation results illustrate that this combined methodology reduces overhead, energy consumption, delay and maintains considerable amount of alive nodes thereby enhancing the network performance.

Keywords: Actuator node, energy efficient routing, energy hole, link failure recovery, link utilization, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
2818 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application

Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada

Abstract:

This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.

Keywords: Energy policy, energy diversification, “IntelSymb” software, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
2817 A Refined Energy-Based Model for Friction-Stir Welding

Authors: Samir A. Emam, Ali El Domiaty

Abstract:

Friction-stir welding has received a huge interest in the last few years. The many advantages of this promising process have led researchers to present different theoretical and experimental explanation of the process. The way to quantitatively and qualitatively control the different parameters of the friction-stir welding process has not been paved. In this study, a refined energybased model that estimates the energy generated due to friction and plastic deformation is presented. The effect of the plastic deformation at low energy levels is significant and hence a scale factor is introduced to control its effect. The predicted heat energy and the obtained maximum temperature using our model are compared to the theoretical and experimental results available in the literature and a good agreement is obtained. The model is applied to AA6000 and AA7000 series.

Keywords: Friction-stir welding, Energy, Aluminum Alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
2816 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing

Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed

Abstract:

Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.

Keywords: Cognitive radio, energy detector, periodogram, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
2815 Simulation of Activity Stream inside Energy Social Business Environment using Assemblage Theory and Simplicial Complex Tool

Authors: Eddie Soulier, Philippe Calvez, Florie Bugeaud, Francis Rousseaux, Jacky Legrand

Abstract:

Social, mobility and information aggregation inside business environment need to converge to reach the next step of collaboration to enhance interaction and innovation. The following article is based on the “Assemblage" concept seen as a framework to formalize new user interfaces and applications. The area of research is the Energy Social Business Environment, especially the Energy Smart Grids, which are considered as functional and technical foundations of the revolution of the Energy Sector of tomorrow. The assemblages are modelized by means of mereology and simplicial complexes. Its objective is to offer new central attention and decision-making tools to end-users.

Keywords: Activity Streams, Assemblage, Energy Social Business Environment, Simplicial Complex, Smart Grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258