WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/14197,
	  title     = {A New Method for Extracting Ocean Wave Energy Utilizing the Wave Shoaling Phenomenon},
	  author    = {Shafiq R. Qureshi and  Syed Noman Danish and  Muhammad Saeed Khalid},
	  country	= {},
	  institution	= {},
	  abstract     = {Fossil fuels are the major source to meet the world
energy requirements but its rapidly diminishing rate and adverse
effects on our ecological system are of major concern. Renewable
energy utilization is the need of time to meet the future challenges.
Ocean energy is the one of these promising energy resources. Threefourths
of the earth-s surface is covered by the oceans. This enormous
energy resource is contained in the oceans- waters, the air above the
oceans, and the land beneath them. The renewable energy source of
ocean mainly is contained in waves, ocean current and offshore solar
energy. Very fewer efforts have been made to harness this reliable
and predictable resource. Harnessing of ocean energy needs detail
knowledge of underlying mathematical governing equation and their
analysis. With the advent of extra ordinary computational resources
it is now possible to predict the wave climatology in lab simulation.
Several techniques have been developed mostly stem from numerical
analysis of Navier Stokes equations. This paper presents a brief over
view of such mathematical model and tools to understand and
analyze the wave climatology. Models of 1st, 2nd and 3rd generations
have been developed to estimate the wave characteristics to assess the
power potential. A brief overview of available wave energy
technologies is also given. A novel concept of on-shore wave energy
extraction method is also presented at the end. The concept is based
upon total energy conservation, where energy of wave is transferred
to the flexible converter to increase its kinetic energy. Squeezing
action by the external pressure on the converter body results in
increase velocities at discharge section. High velocity head then can
be used for energy storage or for direct utility of power generation.
This converter utilizes the both potential and kinetic energy of the
waves and designed for on-shore or near-shore application. Increased
wave height at the shore due to shoaling effects increases the
potential energy of the waves which is converted to renewable
energy. This approach will result in economic wave energy
converter due to near shore installation and more dense waves due to
shoaling. Method will be more efficient because of tapping both
potential and kinetic energy of the waves.},
	    journal   = {International Journal of Environmental and Ecological Engineering},
	  volume    = {4},
	  number    = {12},
	  year      = {2010},
	  pages     = {679 - 685},
	  ee        = {https://publications.waset.org/pdf/14197},
	  url   	= {https://publications.waset.org/vol/48},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 48, 2010},
	}