
 

 

  
Abstract—This paper describes a system-level SoC energy 

consumption estimation method based on a dynamic behavior of 

embedded software in the early stages of the SoC development. A 

major problem of SOC development is development rework caused by 

unreliable energy consumption estimation at the early stages. The 

energy consumption of an SoC used in embedded systems is strongly 

affected by the dynamic behavior of the software. At the early stages 

of SoC development, modeling with a high level of abstraction is 

required for both the dynamic behavior of the software, and the 

behavior of the SoC. We estimate the energy consumption by a UML 

model-based simulation. The proposed method is applied for an actual 

embedded system in an MFP. The energy consumption estimation of 

the SoC is more accurate than conventional methods and this proposed 

method is promising to reduce the chance of development rework in 

the SoC development. ∈ 

 

Keywords—SoC, Embedded Sytem, Energy Consumption, 

Dynamic behavior, UML, Modeling, Model-based simulation 

I. INTRODUCTION 

ECENTLY, the energy consumption requirements for each 

SoC (System-on-a-Chip) are stricter each year. During the 

SoC development process, it is difficult to determine whether 

the energy consumption satisfies the system requirements 

before the completion of the design or pilot phase, which often 

results in developmental rework. Such rework causes schedule 

delays and significantly increases development costs. Accurate 

estimates of energy consumption at early stages of the SoC 

development can significantly reduce the risks. Energy-saving 

technologies can be used in the SoC, but they must consider the 

SoC architecture and the physical layout design at early stages 

of the development.  

Prior work uses spreadsheets to estimate the energy 

consumption in the early stages of the SoC development, but 

the accuracy has been poor. The standard analytical methods 

for energy consumption estimation using CPF (Common Power 

Format) or UPF (Unified Power Format) are usually used only 

in the final stages of SoC development.  

In particular, the energy consumption of an SoC used in an 

embedded system is strongly affected by the dynamic behavior 

 
Yoshifumi Sakamoto is with Graduate School of Information Science and 

Electrical Engineering, Kyushu University, 388, Enpukuji-cho, 
Muromachi-dori Oike Sagaru, Nakagyo-ku, Kyoto-shi, Kyoto 604-8175 Japan 

(email: sakay@jp.ibm.com) 

Kouichi Ono is with IBM Research – Tokyo, Kanagawa, Japan (email: 
onono@jp.ibm.com) 

Takeo Nakada is with IBM Research – Tokyo, Kanagawa, Japan (email: 

nakada@jp.ibm.com) 
Yousuke Kubo is with IBM Japan Services Company Ltd., Tokyo, Japan 

(email: youk@jp.ibm.com) 

Hiroyo Yasuura is with Kyushu University, Fukuoka, Japan (email: 
yasuura@c.csce.kyushu-u.ac.jp). 

of its software. To reduce the energy consumption of the SoC, it 

is effective to use energy-saving technologies such as power 

gating and DVFS (Dynamic Voltage and Frequency Scaling) in 

the SoC design. To effectively apply these energy-saving 

technologies in an SoC design, the voltage and frequency 

changes and the ON-OFF timing of the power supply must be 

controlled by the dynamic behavior of the software. This 

dynamic behavior must be considered when estimating the 

energy consumption. 

To address these problems, we devised a method to estimate 

the energy consumption of the SoC based on the dynamic 

behavior of the software. In the early stages of the SoC 

development process, modeling with a high level of abstraction 

is required for the dynamic behavior of the software and for the 

behavior of the SoC, so that the energy consumption of the SoC 

can be estimated. We use UML (Unified Modeling Language) 

model-based simulations. UML is a model description 

language standardized by OMG (Object Management Group) 

[1], and is widely used for software architecture designs in the 

development of enterprise or embedded systems. 

The novelty of our method is to estimate the energy 

consumption of the SoC based on the dynamic behavior of the 

software. In this paper, the model describing the dynamic 

behavior of the software is called a dynamic behavior model 

and the model describing the behavior of the SoC is called an 

SoC behavior model.  

The dynamic behavior model is created from the existing 

embedded systems utilizing a reverse modeling method. The 

SoC behavior model is created from an architectural design of 

the SoC, the energy consumption information of the IP cores, 

and the behavior of the IP cores with the energy saving 

technologies. The dynamic behavior model is a high-level 

model that can describe the dynamic behavior of the software.    

We use a reverse modeling method [2, 3, 4] to create the 

dynamic behavior model. In the reverse modeling, an existing 

system is analyzed using three analytical technologies, design 

document analysis, static analysis, and dynamic behavior 

analysis. Based on the results of these analyses, the existing 

system can be described with a behavior model at a high level 

of abstraction.  

The SoC behavior model calculates the energy consumption 

of the whole SoC and the delay time taking individual 

behaviors of the software, which are feed from the dynamic 

behavior model, into account. The dynamic behavior model 

feeds the individual behaviors every 1ms. The energy 

consumption of the whole SoC is calculated with reference to 

the energy consumption of the IP cores’ specifications and the 

architectural design of the SoC. The IP cores are circuit blocks 

to configure the SoC, such as processors, buses, memory 

System-Level Energy Estimation for SoC based  

on the Dynamic Behavior of Embedded Software 
Yoshifumi Sakamoto, Kouichi Ono, Takeo Nakada, Yousuke Kubo, and Hiroto Yasuura 

R

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:5, No:11, 2011 

1436International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
.p

df



 

 

controllers, or accelerators. The delay time is the time for 

operations as affected by the energy-saving technologies used 

in the SoC. By feeding the delay time from the SoC behavior 

model back into the dynamic behavior model, the dynamic 

behavior model will hold the next feed for a duration specified 

by the delay time. Estimating the energy consumption in the 

model-based simulation is done with trace-driven simulations 

[5, 6]. 

We evaluated the validity by applying this method for a MFP 

(Multi Function Peripheral/Printer), a typical embedded-system 

product. The energy-saving technologies evaluated included 

Clock Gating and Dynamic Power Gating. 

Here is the structure of this paper. Related work is covered in 

Section 2. Modeling appears in Section 3. Model-based 

simulation for estimating the energy consumption is described 

in Section 4. Validity verification by comparing to 

conventional method is in Section 5. Finally, our conclusion 

and future work appears in Section 6. 

II. RELATED WORK  

The methods to analyze the energy consumption with CPF 

(Common Power Format) or UPF (Unified Power Format) [7] 

use a netlist. Because the netlist is a deliverable in the SoC 

development, such methods are only suitable for the final 

stages of SoC development, but are not suitable to estimate the 

energy consumption in the early stages while the architecture is 

still described at a high level of abstraction. The sleep control 

method [8] is a course-grained method that uses IP core unit or 

module unit in the SoC, but this is different from a simulation 

method that focuses on the dynamic behavior of the system. 

 

 

 

Spreadsheet-based methods [9] can estimate the energy 

consumption in the early stages of SoC development. They use 

both the static energy consumption, which is estimated from the 

specification of each IP core, and the dynamic energy 

consumption, which is estimated from the Activity Factor.  The 

Activity Factor is a percentage of the switching frequency. 

Our new method in this paper is similar to the 

spreadsheet-based methods, because it is using the static energy 

consumption, which is estimated from the specification of each 

IP core. However, the proposed method in this paper is 

different from the spreadsheet-based methods because is uses 

the dynamic behaviors of the system, not the Activity Factor.  

A method using UML model to estimate the energy 

consumption of a cache memory in SoC has been proposed [10]. 

This uses the design data from the UML model. The proposed 

method in this paper differs because it is referring to the SoC 

architecture and describing its behavior as a UML model.  

III. MODELING  

A. Modeling Flow 

The dynamic behavior model describes the dynamic 

behavior of the software. The SoC behavior model describes 

the energy consumption and the delay time. Fig. 1 shows flows 

to construct these models.  

By applying the reverse modeling method to an existing 

embedded system, its dynamic behavior model is constructed 

as an executable UML model that reproduces the dynamic 

behavior of the software. It is necessary to acquire execution 

trace data with timing information while running the actual 

software in the embedded system. The execution trace data is 

acquired using a system observation technology [11] that 

insures the data describing the dynamic behaviors is not 

affected by the observations. The execution trace data includes 

the timestamps for function calls and returns, identifiers for the 

threads that execute the function calls, and the input values of 

any arguments.  

In the dynamic behavior analysis, the software executes in 

defined execution scenarios based on the results of the design 

document analysis and static analysis. The execution scenarios 

express the focal behaviors of the embedded system as 

inspection objects and collect the execution trace data. 

Next we refer to the system and control structures obtained 

from the design document analysis and static analysis, which 

were created from the execution trace data, to create the 

dynamic behavior model.  

The SoC behavior model is constructed to be an executable 

UML model that reproduces the energy consumption and the 

delay time. We refer to the energy consumption of the IP cores 

specifications and architectural design of SoC to create an SoC 

behavior model. The behaviors of the SoC behavior models are 

dependent on the individual energy-saving technologies being 

used. The energy evaluation model combines the SoC behavior 

model with the dynamic behavior model to simulatie the energy 

consumption of the SoC.  

B. Dynamic Behavior Model 

The dynamic behavior model has two modules: The task 

module and task manager module (Fig. 2). The task module is a 

 
 

Fig. 1 Modeling flow 

Static 

Analysis

Dynamic 

Behavior

Model

SoC

Behavior 

Model
Model for Energy 

Estimation

Technical

documents
Source code

IP core 

Specifications

Dynamic 

Behavior 

Analysis

Integration

Existing

Embedded

System

Execution 

Trace Data

SoC Architecture 

Design

Document 

Analysis

Software 

Configurations

Dynamic 

Behavior

Model

SoC

Behavior 

Model

Modeling

Modeling

Static 

Analysis

Dynamic 

Behavior

Model

SoC

Behavior 

Model
Model for Energy 

Estimation

Technical

documents
Source code

IP core 

Specifications

Dynamic 

Behavior 

Analysis

Integration

Existing

Embedded

System

Execution 

Trace Data

SoC Architecture 

Design

Document 

Analysis

Software 

Configurations

Dynamic 

Behavior

Model

SoC

Behavior 

Model

Modeling

Modeling

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:5, No:11, 2011 

1437International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
.p

df



 

parameter file that configures the data obtained by analyzing 

the execution trace data. The task manager module describe

the behaviors of the software based on the parameters read from 

the task module file.  

The task module includes the timestamps for function

and returns, processor usage per unit time

data transfers via the buses. The task module 

the behavior of the software as the software

is loaded for a simulation scenario in a model

by the task manager module.  

The task manager module controls the SoC behavior model, 

as described by a sequence diagram. The task manager module 

sends the time to start and stop operations 

SoC behavior model. These times are calculated from the 

timestamps for function calls and returns from

module. The bus usage is calculated from 

transfers per unit time and the bandwidth of 

processor usage and the bus usage are also 

behavior model. 

C. SoC Behavior Model 

The SoC behavior model is composed of 

and a power sim model.  

The power sim model accumulates the energy consumption 

of each power module and calculates

consumption of the SoC. The power module

of each IP core and calculates its energy consumption.

the end of each process and the delay time of each behavior 

the dynamic behavior model. There is a power 

IP core, which is a unit of the system structur

model that describes the state transition

consumption of each IP core. It doesn't have

about the functions or internal structures of 

shows a state diagram of the power module. 

on state and a power off state. The power on 

states for  

 

Fig. 2 Model for Energy Estimation

Dynamic Behavior Model

ExecuteIdle

Task Manager

notifyExecute / notifyFinish/

Delay Time

Power Module

Power ON

Starting

Idle

Working

Power OFF

calcWattage

Processor Usage, Bus

Start and Stop timing

SoC Behavior Model

Dynamic Behavior Model

ExecuteIdle

Task Manager

notifyExecute / notifyFinish/

Delay Time

Power Module

Power ON

Starting

Idle

Working

Power OFF

calcWattage

Processor Usage, Bus

Start and Stop timing

SoC Behavior Model

 

eter file that configures the data obtained by analyzing 

ask manager module describes 

parameters read from 

The task module includes the timestamps for function calls 

and returns, processor usage per unit time, and the sizes of the 

. The task module tracks changes of 

as the software runs. This module 

model-based simulation 

the SoC behavior model, 

a sequence diagram. The task manager module 

 of the IP cores to the 

are calculated from the 

from the task manager 

The bus usage is calculated from the sizes of the data 

bandwidth of each bus. The 

are also sent to the SoC 

SoC behavior model is composed of a power module 

odel accumulates the energy consumption 

odule and calculates  the total power 

module controls the state 

its energy consumption. It tracks 

delay time of each behavior for 

ower module for each 

system structure. This is the 

the state transitions of the energy 

have any information 

of the IP cores. Fig. 3 

odule. There is a power 

ower on state has internal 

Starting, Idle, and Working.

the setup period for an energy

that doesn't perform any data processing 

Working is the state that does

number of clock ticks.  

D.  Energy Evaluation Model of MFP

Execution trace data from the actual MFP

create a dynamic behavior model. 

for four pages continuous printing

evaluation images from JEITA (Japan Electronics and 

Information Technology Industries Association) [

selected these two images (Fig.

simulation, which requires different processing time

internal expression generation

expression processing (IEP). The t

the execution trace data. T

described based on the printing function 

printing process involves these steps

1. Print description language data 

2. Internal Expression Generation (IEG)

converted into internal expression

in the MFP. 

3.  Internal Expression Processing (IEP)

expressions are rasterized

Next the SoC behavior model of the SoC 

described. Fig. 5 shows the organization

its IP cores that are active in printing operations

the Configuration is limited to the

controller (Mem Ctl), bus, and two hardware accelerators 

(Fig.5 (a)). Accelerator A (Acc.

are hardware accelerators used in the IEP.

 

Model for Energy Estimation 

Task

Parameter 

File

Power Sim

Model

calcWattage

Processor Usage, Bus Usage, 

Start and Stop timing

Task

Parameter 

File

Power Sim

Model

calcWattage

Processor Usage, Bus Usage, 

Start and Stop timing

Fig. 3 State Diagram of Power Module

Fig. 4 Execution scenario 

and Working. Starting is the state that shows 

an energy-saving technology. Idle is a state 

doesn't perform any data processing for some clock ticks. 

does data processing during some 

Energy Evaluation Model of MFP 

xecution trace data from the actual MFP is collected to 

create a dynamic behavior model. This execution scenario calls 

continuous printing. The images are print quality 

JEITA (Japan Electronics and 

Information Technology Industries Association) [12]. We 

(Fig. 4) for the energy consumption 

simulation, which requires different processing times for the 

eneration (IEG) and for the internal 

The task module was created from 

The task manager module was 

printing function of the MFP. The 

involves these steps:  

rint description language data is received from the host.  

Internal Expression Generation (IEG): The data is 

into internal expressions suitable for processing 

Internal Expression Processing (IEP): The internal 

zed into image data. 

SoC behavior model of the SoC of the MFP is 

organization of the SoC, based on 

are active in printing operations. For simplicity, 

is limited to the processor, memory 

controller (Mem Ctl), bus, and two hardware accelerators 

Accelerator A (Acc. A) and Accelerator B (Acc. B) 

used in the IEP. This is the baseline 

 
State Diagram of Power Module 

 
 

Execution scenario – print images 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:5, No:11, 2011 

1438International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
.p

df



 

 

SoC.  

We ran the SoC behavior model for several configurations. 

The energy-saving technologies adopted in new SoCs are 

Clock Gating and Dynamic Power Gating, which are applied to 

both Accelerator A and Accelerator B. In an SoC with clock 

gating, additional components are inserted to suspend clock to 

the accelerator (Fig. 5(b)). In an SoC in which Dynamic Power 

Gating is used, the power planes of the accelerators are isolated. 

Accelerator A is in Voltage Island A (VI.A), Accelerator B is in 

Voltage Island B (VI.B), and the other components are in 

Voltage Island C (VI.C). Each voltage island can cut its power 

supply independently (Fig. 5(c)). We used five power modules 

in our SoC behavior model. 

This is how the dynamic behavior and the SoC behaviors 

were modeled. The energy evaluation model uses those models. 

E. Calculation of Energy Consumption 

The energy consumption of each IP core in the SoC is 

tracked with its dynamic behavior model. The energy 

consumption of the SoC is estimated based on each behavior, 

using the parameters for energy consumption by each IP core as 

shown in Table I. These energy consumptions are based on the 

specifications of the IP cores. The energy consumption of the 

processor is calculated using this equation (1), with the 

processor usage coming from the dynamic behavior model. 

 

mpu_minmpu_minmpu_maxmpu_rate usage(%) MPU)( PPPP +⋅−=    (1) 

 

The energy consumption of a memory controller and a bus is 

calculated using Equations (2) and (3), where the memory 

transfer size comes from the dynamic behavior model. We use 

2,240MB/s as an effective memory bandwidth. U is the usage 

of memory bandwidth. 

 

idthemoryBandwEffectiveM

sferSizeMemoryTran
=U           (2) 

{ }
bus_minmem_min

bus_minbus_maxmem_minmem_maxbus_ratememc )()(

PP

UPPPPP

++

⋅−+−=⋅    (3) 

 

The energy consumption at time t for Accelerator A or 

Accelerator B are given by P(t) for discrete times. T in Equation 

(4) denotes the set of discrete times  when the accelerator is in 

operation. The V in the equation denotes the set of discrete 

times when the accelerator is not running. The start time and the 

running time of each accelerator are given by the dynamic 

behavior model. The energy consumption of an accelerator is 

calculated using these equations: 

 

 

)BA,(

erGatingDynamicPow

gClockGatin

CBaselineSo

)()(

)()(

)()(

acc_pgacc_op

acc_cgacc_op

acc_fracc_op

_acc

=









+

+

+

=

∑∑
∑∑
∑∑

∈∈

∈∈

∈∈

X

tPtP

tPtP

tPtP

P

VtTt

VtTt

VtTt

X

）（
）（
）（

 (4) 

 

Here is the equation of the total energy consumption of the 

system in the energy evaluation: 

 

acc_Bacc_Abus_ratememcmpu_rate PPPPP +++= ⋅
         (5) 

 

IV. SIMULATION  

We evaluated the energy consumption of three different SoC 

designs with model-based simulations. One was the baseline 

SoC and the other two SoCs used energy-saving technologies. 

The simulation scenarios are the same as in the dynamic 

behavior analysis of the execution scenarios, with two print 

images and each of them is four pages continuous print. We 

used the model execution feature in IBM Rational Rhapsody 

[13] for the model simulations.  

It is important to insure the changes of the energy 

consumption are driven by the system behavior in the 

simulation. Fig. 6 shows the simulation results showing the 

changes in the energy consumption over time. The SoC model 

of the clock gating reduces the energy consumption by 6.5% 

compared to the baseline SoC model. The SoC model of the 

dynamic voltage gating reduces the energy consumption by 

15% compared to the baseline SoC. However, the delay time 

affect to the overall operating time. The operating time is by 

10,390 microseconds longer than the baseline SoC. The delay 

time is startup waiting time of 10 microseconds. The startup 

waiting time is a duration defined from a point when a process 

start notice is released by the dynamic behavior model to a 

 
 

Fig. 5 SoC block diagrams 

Operating SystemBus : inter connection

Mem Ctl

MPU
Acc.BIEGAcc.A

(a) Baseline SoC (b) Clock Gating  Applied SoC

(c) Dynamic Power Gating 

Applied SoC

Operating SystemBus : inter connection

IEG
Acc.A

Mem Ctl
Voltage Island- C

Voltage

Island-A

MPU
IEG

Acc.B

Voltage

Island-B

Operating SystemBus : inter connection

Mem Ctl

MPU IEG
Acc.B

Clock

gate

IEG
Acc.A

Clock

gate

Operating SystemBus : inter connection

Mem Ctl

MPU
Acc.BIEGAcc.A

Operating SystemBus : inter connection

Mem Ctl

MPUMPU
Acc.BIEGAcc.A

(a) Baseline SoC (b) Clock Gating  Applied SoC

(c) Dynamic Power Gating 

Applied SoC

Operating SystemBus : inter connection

IEG
Acc.A

Mem Ctl
Voltage Island- C

Voltage

Island-A

MPUMPU
IEG

Acc.B

Voltage

Island-B

Operating SystemBus : inter connection

Mem Ctl

MPUMPU IEG
Acc.B

Clock

gate

Clock

gate

IEG
Acc.A

Clock

gate

Clock

gate

TABLE I 
ENERGY CONSUMPTION FOR EACH IP CORE IN THE SOC 

IP Core Condition Name 
Energy 

Consumption(mJ) 

Processor Working(Max.) Pmpu_max 120 

Idle Pmpu_min 615 

Memory 
Controller 

Working(Max.) Pmem_max 53 

Idle Pmem_min 35 

Bus and Inter 

connections 

Working(Max.) Pbus_max 37 

Idle Pbus_min 20 

Accelerator –A 

And 

Accelerator-B 

Working(Max.) Pacc_op 165 

Idle Pacc_fr 140 

Clock Gating Pacc_cg 84 

Dynamic Power 
Gating 

Pacc_pg 9 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:5, No:11, 2011 

1439International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
.p

df



 

point when the power for the voltage island switches on

Next, we simulated the tradeoff for dynamic power gating 

the application. One tradeoff is between 

time and the energy consumption. The other is 

between the energy consumption caused by 

and the extension of the operating time. 

The startup waiting time is swept incrementally to find a 

trade off point (Fig. 7). When the startup waiti

than 5,500 microseconds, the total energy consumption 

larger than the baseline SoC, and so there no 

from the dynamic power gating. We believe 

the increase in the total energy consumption due to the l

processor operating time from the longer 

delay times. 

The energy consumption by the surge current at the time of 

power supply startup has to be added to the model

must consider the time from the end of execution of 

accelerators to the time the power is cut for the

(Fig. 8). The energy consumed by the surge

the normal value, and the surge lasts 500 microseconds. When 

the hold time is set at 3,000 microseconds, 

consumption is minimized. In addition, if the hold time is set at 

29,300 microseconds or longer, there is no net

This indicates that the periods when the accelerator

operation are not evenly distributed. 

Fig. 6 Simulation results of energy simulation, continuous printing

of four pages 

(a) Baseline SoC
�Mean 1,509mJ,  Peak  1,574mJ,  Whole  25,807mJ,  Execution time  17.1

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

100m s

m
J

M PU Acc.A Acc.B BUS

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

100m s

m
J

M PU Acc.A Acc.B BUS

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

100m s

m
J

M PU Acc.A Acc.B BUS

(b) Clock Gating applied SoC
�Mean 1,412mJ,  Peak  1,565mJ,  Whole  24,147mJ,  Execution time  17.1

(c) Dynamic Power Gating applied SoC
�Mean 1,282mJ,  Peak  1,468mJ,  Whole  21,931mJ,  Execution time  17.1

MPU Acc.A

MPU Acc.A

MPU Acc.A

(a) Baseline SoC
�Mean 1,509mJ,  Peak  1,574mJ,  Whole  25,807mJ,  Execution time  17.1

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

100m s

m
J

M PU Acc.A Acc.B BUS

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

100m s

m
J

M PU Acc.A Acc.B BUS

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

100m s

m
J

M PU Acc.A Acc.B BUS

(b) Clock Gating applied SoC
�Mean 1,412mJ,  Peak  1,565mJ,  Whole  24,147mJ,  Execution time  17.1

(c) Dynamic Power Gating applied SoC
�Mean 1,282mJ,  Peak  1,468mJ,  Whole  21,931mJ,  Execution time  17.1

MPU Acc.AMPU Acc.A

MPU Acc.AMPU Acc.A

MPU Acc.AMPU Acc.A

 

point when the power for the voltage island switches on.  

dynamic power gating in 

between the startup waiting 

energy consumption. The other is the tradeoff 

energy consumption caused by the surge current 

The startup waiting time is swept incrementally to find a 

the startup waiting time is more 

energy consumption is 

no net energy savings 

ating. We believe this is because of 

the increase in the total energy consumption due to the longer 

longer setup waiting and 

current at the time of 

to the model. Also, we 

the time from the end of execution of the 

is cut for the voltage island 

ed by the surge current is five times 

500 microseconds. When 

the hold time is set at 3,000 microseconds, the overall energy 

the hold time is set at 

re is no net energy reduction. 

the accelerators are in 

V. VALIDITY 

To verify the validity of the proposed method, we compared 

the estimated energy consumption 

proposed method. The verification subjects

SoC, a clock-gated SoC, and dynamic

Currently, the spreadsheet-based estimation method 

consumption is generally 

consumption was measured for 

The results of these comparisons appear in TABLE II. 

TABLE III shows the settings 

spreadsheet-based method. The activity factor in 

design was 0.070. The estimat

temperature of 105°C and process rule

execution time per page for

Accelerator B was 10.3%. These ratios 

logs of the actual software. These ratios were reflected 

Simulation results of energy simulation, continuous printing 

1,509mJ,  Peak  1,574mJ,  Whole  25,807mJ,  Execution time  17.10s

110 115 120 125 130 135 140 145 150 155 160 165

110 115 120 125 130 135 140 145 150 155 160 165

110 115 120 125 130 135 140 145 150 155 160 165

1,412mJ,  Peak  1,565mJ,  Whole  24,147mJ,  Execution time  17.10s

1,282mJ,  Peak  1,468mJ,  Whole  21,931mJ,  Execution time  17.11s

Acc.B Bus & Memory ctl

Acc.B Bus & Memory ctl

Acc.B Bus & Memory ctl

1,509mJ,  Peak  1,574mJ,  Whole  25,807mJ,  Execution time  17.10s

110 115 120 125 130 135 140 145 150 155 160 165

110 115 120 125 130 135 140 145 150 155 160 165

110 115 120 125 130 135 140 145 150 155 160 165

1,412mJ,  Peak  1,565mJ,  Whole  24,147mJ,  Execution time  17.10s

1,282mJ,  Peak  1,468mJ,  Whole  21,931mJ,  Execution time  17.11s

Acc.B Bus & Memory ctlAcc.B Bus & Memory ctl

Acc.B Bus & Memory ctlAcc.B Bus & Memory ctl

Acc.B Bus & Memory ctlAcc.B Bus & Memory ctl

Fig. 7 SoC energy consumption 

Fig. 8 SoC energy consumption and hold time

ALIDITY VERIFICATION  

verify the validity of the proposed method, we compared 

the estimated energy consumption with the spreadsheet and the 

The verification subjects were the baseline 

and dynamic-power-gated SoC. 

based estimation method for energy 

consumption is generally used. In addition, the energy 

for the actual SoC.  

The results of these comparisons appear in TABLE II. 

TABLE III shows the settings for the activity factor in the 

based method. The activity factor in the actual SoC 

stimated conditions were a junction 

process rules of 90 nm. The ratio of 

for Accelerator A was 18.6% and 

10.3%. These ratios came from the operating 

logs of the actual software. These ratios were reflected in the 

SoC energy consumption and startup waiting time 

 

 
nergy consumption and hold time 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:5, No:11, 2011 

1440International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
.p

df



 

 

activity factors of each accelerator. We calculated the energy 

consumption of the same configuration as the model of the SoC 

from the measurements of energy consumption during normal 

operations of the actual SoC and from measurement of the 

energy consumption with power gating of the actual SoC. The 

average error of the proposed method and the actual SoC was 

13.0% and the average error of the spreadsheet-based method 

and the actual SoC was 20.6%. These results show the proposed 

method is appropriate to estimate the energy consumption of 

the SoC in the early stages of SoC development. The proposed 

method had higher accuracy than the standard 

spreadsheet-based method. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we described a system-level SoC energy 

consumption estimation method based on the dynamic behavior 

of the embedded software. We represented the dynamic 

behavior of the software and the energy consumption behavior 

of the SoC using UML models. We estimated the energy 

consumption with a model-based simulation using those UML 

models.  From the comparisons with conventional method and 

the actual SoC, the proposed method accurately estimated the 

energy consumption of the SoC in the early stages of the SoC 

development. Our future works will involve two directions. 

One is to improve the accuracy of the simulation, which 

requires more accurate modeling of the processor that consume 

the most energy. The other direction is to consider how to add 

other IP cores in the SoC to the model. 

ACKNOWLEDGMENT 

The authors would like to thank the members of this project 

for their comments and support. 

TRADEMARK 

IBM, Rational, and Rhapsody are trademarks or registered 

trademarks of International Business Machines Corporation in 

the United States, other countries, or both. 

REFERENCES  

[1] Object Management Group, http://www.omg.org/ 
[2] K. Ono, M. Toyota, R. Kawahara, Y. Sakamoto, T. Nakada, and N. 

Fukuoka, “A modeling method for performance analysis in model-driven 

development”, Proceedings of the 13th Design, Automation and Test in 
Europe (DATE 2010), 2010, pp.1337-1340. 

[3] K. Ono, M. Toyota, R. Kawahara, Y. Sakamoto, T. Nakada, and N. 

Fukuoka, “A Model-based Method for Evaluating Embedded System 
Performance by Abstraction of Execution Traces”, Proceedings of 6th 

European Conference on Modeling Foundations and Applications 
(ECMFA 2010), Springer (2010), pp.233-244. 

[4] Y. Sakamoto, T. Nagano, T. Nakada, K. Ono, K. Hisazumi, and A. 

Fukuda, “Development of Embedded Systems Using Reverse 
Engineering and Model-based Performance Evaluation”, Proceedings of 

the 5th International Conference on Project Management 

(ProMAC2010), 2010, pp.160-168. 
[5] J. M. Hsu and P. Banerjee. “Performance measurement and trace driven 

simulation of parallel CAD and numeric applications on a hypercube 

multicomputer”. IEEE Transactions on Parallel and Distributed Systems, 
Vol. 3, No. 4, pp. 451.464, July 1992. 

[6]  C. A. Prete, G. Prina, and L. Ricciardi, “A trace-driven simulator for 

performance evaluation of cache-based multiprocessor systems.”, IEEE 
Transactions on Parallel and Distributed Systems, Vol. 6, No. 9, pp. 

915-929, September 1995. 

[7] IEEE Std.1801, Standard for Design and Verification of Low Power 
Integrated Circuits, http://standards.ieee.org 

[8] Y. Kanno, “Hierarchical Power Distribution with 20 Power Domains in 

90-nm Low-Power Multi-CPU Processor”, Solid-State Circuits 
Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE 

International 

[9] Cadence InCyte Chip Estimator, 
http://www.cadence.com/products/ld/chip_estimator/pages/default.aspx 

[10] A. G. Silva-Filho, R. F. Cordeiro, C. Cristiano, Ara ́  ujo, A. Sarmento, M. 

Gomes, E. Barros, and M. E. Lima, “An ESL Approach for Energy 
Consumption Analysis of Cache Memories in SoC Platforms”, Hindawi 

Publishing Corporation, International Journal of Reconfigurable 

Computing, Volume 2011, Article ID 219497,  
[11] N. Ohba and K. Takano, “Hardware debugging method based on signal 

transitions and transactions”, Proceedings of the 11th Asia and South 

Pacific Design Automation Conference (ASP-DAC 2006), 2006, pp. 
454-459. 

[12] JEITA - Japan Electronics and Information Technology Industries 

Association, http://www.jeita.or.jp/english/ 
[13] IBM Rational Rhapsody, 

 http://www-01.ibm.com/software/awdtools/rhapsody/ 

TABLE II 

COMPARISON OF ENERGY CONSUMPTION 

 

SoC type 

(a) 

Proposed 

Method 
(mJ) 

(b) 

Spread 

sheet 
(mJ) 

(c) 

Actual 

SoC 
(mJ) 

Error 

(a) vs (c) 

 
(%) 

Error 

(b) vs (c) 

 
(%) 

Baseline 1,509 1,620 1,361 10.9 19.0 

Clock 

Gating 

Applied 

1,412 1,488 1,250 13.0 19.0 

Dynamic 

Power 

Gating 
Applied 

1,282 1,377 1,113 15.2 23.7 

Average - - - 13.0 20.6 

 

TABLE III 

ACTIVITY FACTOR FOR ENERGY ESTIMATION SPREADSHEET-BASED 

ENERGY ESTIMATION 

IP Core 
Baseline 

SoC 
Clock gating / Dynamic 

Power Gating SoC 

Processor 0.070 0.070 

Memory Controller 0.070 0.070 

Bus and Inter connections 0.070 0.070 

Accelerator A 0.070 0.013 

Accelerator B 0.070 0.007 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:5, No:11, 2011 

1441International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

31
.p

df




