Search results for: Sliding Door Mechanism
1184 Experimental Verification and Finite Element Analysis of a Sliding Door System Used in Automotive Industry
Authors: C. Guven, M. Tufekci, E. Bayik, O. Gedik, M. Tas
Abstract:
A sliding door system is used in commercial vehicles and passenger cars to allow a larger unobstructed access to the interior for loading and unloading. The movement of a sliding door on vehicle body is ensured by mechanisms and tracks having special cross-section which is manufactured by roll forming and stretch bending process. There are three tracks and three mechanisms which are called upper, central and lower on a sliding door system. There are static requirements as strength on different directions, rigidity for mechanisms, door drop off, door sag; dynamic requirements as high energy slam opening-closing and durability requirement to validate these products. In addition, there is a kinematic requirement to find out force values from door handle during manual operating. In this study, finite element analysis and physical test results which are realized for sliding door systems will be shared comparatively.Keywords: Finite element analysis, sliding door, experimental, verification, vehicle tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30951183 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests
Authors: M. Tufekci, C. Guven
Abstract:
In Automotive Industry, sliding door systems that are also used as body closures are safety members. Extreme product tests are realized to prevent failures in design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for design process. These analyses are used before production of prototype for validation of design according to customer requirement. In result of this, substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. Cheaper model can be created by selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then optimum combination was achieved.Keywords: Finite Element Analysis, Sliding Door Mechanism, Element Type, Structural Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651182 Determination of Geometric Dimensions of a Double Sided Linear Switched Reluctance Motor
Authors: Dursun M., Koc F., Ozbay H.
Abstract:
In this study, a double-sided linear switched reluctance motor (LSRM) drive was investigated as an alternative actuator for vertical linear transportation applications such as a linear elevator door, hospital and subway doors which move linearly and where accurate position control and rapid response is requested. A prototype sliding elevator door that is focused on a home elevator with LSRMs is designed. The motor has 6/4 poles, 3 phases, 8A, 24V, 250 W and 250 N pull forces. Air gap between rotor and translator poles of the designed motor and phase coil-s ideal inductance profile are obtained in compliance with the geometric dimensions. Operation and switching sections as motor and generator has been determined from the inductance profile.Keywords: Linear switched reluctance motor, sliding door, elevator door, linear motor design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27051181 Simulation of Heat Transfer in the Multi-Layer Door of the Furnace
Authors: U. Prasopchingchana
Abstract:
The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.Keywords: Conduction, heat transfer, multi-layer door, natural convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20961180 Examining the Modular End of Line Control Unit Design Criteria for Vehicle Sliding Door System Track Profile
Authors: O. Kurtulus, C. Yavuz
Abstract:
The end of the line controls of the finished products in the automotive industry is important. The control that has been conducted with the manual methods for the sliding doors tracks is not sufficient and faulty products cannot be identified. As a result, the customer has the faulty products. In the scope of this study, the design criteria of the PLC integrated modular end of line control unit has been examined, designed and manufactured to make the control of the 10 different track profile to 2 different vehicles with an objective to minimize the salvage costs by obtaining more sensitive, certain and accurate measurement results. In the study that started with literature and patent review, the design inputs have been specified, the technical concept has been developed, computer supported mechanic design, control system and automation design, design review and design improvement have been made. Laser analog sensors at high sensitivity, probes and modular blocks have been used in the unit. The measurement has been conducted in the system and it is observed that measurement results are more sensitive than the previous methods that we use.Keywords: Control unit design, end of line, modular design, sliding door system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781179 Wet Sliding Wear and Frictional Behavior of Commercially Available Perspex
Authors: S. Reaz Ahmed, M. S. Kaiser
Abstract:
The tribological behavior of commercially used Perspex was evaluated under dry and wet sliding condition using a pin-on-disc wear tester with different applied loads ranging from 2.5 to 20 N. Experiments were conducted with varying sliding distance from 0.2 km to 4.6 km, wherein the sliding velocity was kept constant, 0.64 ms-1. The results reveal that the weight loss increases with applied load and the sliding distance. The nature of the wear rate was very similar in both the sliding environments in which initially the wear rate increased very rapidly with increasing sliding distance and then progressed to a slower rate. Moreover, the wear rate in wet sliding environment was significantly lower than that under dry sliding condition. The worn surfaces were characterized by optical microscope and SEM. It is found that surface modification has significant effect on sliding wear performance of Perspex.
Keywords: Perspex, wear, friction, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11961178 A New Type Safety-Door for Earthquake Disaster Prevention - Part I
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
From the past earthquake events, many people get hurt at the exit while they are trying to go out of the buildings because of the exit doors are unable to be opened. The door is not opened because it deviates from its the original position. The aim of this research is to develop and evaluate a new type safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. The proposed door is composed of three components: outer frame joined to the wall, inner frame (door frame) and circular hollow section connected to the inner and outer frame which is used as seismic energy dissipating device.
Keywords: Earthquake disaster, FE analysis, Low yield point steel, Safety-doors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22791177 An Improved Optimal Sliding Mode Control for Structural Stability
Authors: Leila Fatemi, Morteza Moradi, Azadeh Mansouri
Abstract:
In this paper, the modified optimal sliding mode control with a proposed method to design a sliding surface is presented. Because of the inability of the previous approach of the sliding mode method to design a bounded and suitable input, the new variation is proposed in the sliding manifold to obviate problems in a structural system. Although the sliding mode control is a powerful method to reject disturbances and noises, the chattering problem is not good for actuators. To decrease the chattering phenomena, the optimal control is added to the sliding mode control. Not only the proposed method can decline the intense variations in the inputs of the system but also it can produce the efficient responses respect to the sliding mode control and optimal control that are shown by performing some numerical simulations.
Keywords: Structural Control, optimal control, optimal sliding mode controller, modified sliding surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20071176 Design of Moving Sliding Surfaces in A Variable Structure Plant and Chattering Phenomena
Authors: T.C. Manjunath
Abstract:
This paper deals with the design of a moving sliding surface in a variable structure plant for a second order system. The chattering phenomena is also dealt with during the switching process for an unstable sliding surface condition. The simulation examples considered in this paper shows the effectiveness of the sliding mode control method used for the design of the moving sliding surfaces. A simulink model of the continuous system was also developed in MATLAB-SIMULINK for the design and hence demonstrated. The phase portraits and the state plots shows the demonstration of the powerful control technique which can be applied for second order systems.Keywords: Sliding mode control, VSC, Reaching phase, Sliding phase, Moving surfaces, Chattering, Trajectories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23351175 Large-Deflection Analysis of Automotive Vehicle's Door Wiring Harness System Using Finite Element Method
Authors: Byeong-Sam Kim, Kangsu Lee, Kyoungwoo Park, Samir Ben Chaabane
Abstract:
A Vehicle-s door wireing harness arrangement structure is provided. In vehicle-s door wiring harness(W/H) system is more toward to arrange a passenger compartment than a hinge and a weatherstrip. This article gives some insight into the dimensioning process, with special focus on large deflection analysis of wiring harness(W/H) in vehicle-s door structures for durability problem. An Finite elements analysis for door wiring harness(W/H) are used for residual stresses and dimensional stability with bending flexible. Durability test data for slim test specimens were compared with the numerical predicted fatigue life for verification. The final lifing of the component combines the effects of these microstructural features with the complex stress state arising from the combined service loading and residual stresses.
Keywords: Large deflection, wiring harness system, finite element analysis, vehicle's door.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33141174 Adaptive Sliding Mode Observer for a Class of Systems
Abstract:
In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown that the second one is more robust to estimate the state.Keywords: Adaptive observer, Lipchitz system, Interconnected fractional nonlinear system, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601173 Backstepping Sliding Mode Controller Coupled to Adaptive Sliding Mode Observer for Interconnected Fractional Nonlinear System
Authors: D. Elleuch, T. Damak
Abstract:
Performance control law is studied for an interconnected fractional nonlinear system. Applying a backstepping algorithm, a backstepping sliding mode controller (BSMC) is developed for fractional nonlinear system. To improve control law performance, BSMC is coupled to an adaptive sliding mode observer have a filtered error as a sliding surface. The both architecture performance is studied throughout the inverted pendulum mounted on a cart. Simulation result show that the BSMC coupled to an adaptive sliding mode observer have stable control law and eligible control amplitude than the BSMC.Keywords: Backstepping sliding mode controller, interconnected fractional nonlinear system, adaptive sliding mode observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22921172 Chattering Phenomenon Supression of Buck Boost DC-DC Converter with Fuzzy Sliding Modes Control
Authors: Abdelaziz Sahbani, Kamel Ben Saad, Mohamed Benrejeb
Abstract:
This paper proposes a Fuzzy Sliding Mode Control (FSMC) as a control strategy for Buck-Boost DC-DC converter. The proposed fuzzy controller specifies changes in the control signal based on the knowledge of the surface and the surface change to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.
Keywords: Buck Boost converter, Sliding Mode Control, Fuzzy Sliding Mode Control, robustness, chattering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27591171 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach
Authors: M. Zamurad Shah, M. Kemal Özgören, Raza Samar
Abstract:
This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.
Keywords: Unmanned Aerial Vehicles, Sliding mode control, 3D Guidance, Path following, trajectory tracking, nonlinear sliding manifolds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27031170 Output Regulation of Perturbed Nonlinear Systems by Nested Sliding Mode Control
Authors: Aras Adhami Mirhoseini, Mohammad J. Yazdanpanah
Abstract:
In this paper, we consider nested sliding mode control of SISO nonlinear systems, perturbed by bounded matched and unmatched uncertainties. The systems are assumed to be in strict-feedback form. A step wise procedure is introduced to obtain the controller. In each step, a continuous sliding mode controller is designed as virtual control law. Then the next step sliding surface is defined by using this virtual controller. These sliding surfaces are selected as nonlinear static functions of the system states. Finally in the last step, smooth static state feedback control law is determined such that the output reaches the desired set-point while the system is forced arbitrary close to the intersection of sliding surfaces and the states remain bounded.
Keywords: Sliding mode control, Strict-feedback form, Unmatched uncertainty, output regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21501169 Fuzzy Sliding Mode Speed Controller for a Vector Controlled Induction Motor
Authors: S. Massoum, A. Bentaallah, A. Massoum, F. Benaimeche, P. Wira, A. Meroufel
Abstract:
This paper presents a speed fuzzy sliding mode controller for a vector controlled induction machine (IM) fed by a voltage source inverter (PWM). The sliding mode based fuzzy control method is developed to achieve fast response, a best disturbance rejection and to maintain a good decoupling. The problem with sliding mode control is that there is high frequency switching around the sliding mode surface. The FSMC is the combination of the robustness of Sliding Mode Control (SMC) and the smoothness of Fuzzy Logic (FL). To reduce the torque fluctuations (chattering), the sign function used in the conventional SMC is substituted with a fuzzy logic algorithm. The proposed algorithm was simulated by Matlab/Simulink software and simulation results show that the performance of the control scheme is robust and the chattering problem is solved.Keywords: IM, FOC, FLC, SMC, and FSMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28141168 Tribological Behaviour of Si-Cu-Mo-Ni Alloyed Austempered Ductile Iron
Authors: Rajendra M. Galagali, R. G. Tikotkar
Abstract:
Ductile iron samples alloyed with 2.5% Si, 0.78% Cu, 0.421% Mo and 0.151% Ni were austempered at 345 °C and 380 °C for 150 and 180 mins and then tested for wear strength. Ductile iron was also included in the study for comparison purposes. A pin-on-disc machine was employed for wear study. The investigations were carried out for a speed of 3 m/s, under the contact load of 29.43 N with varying sliding distances ranging from 1000 m to 5000 m. The experimental outcome indicates that ADI austempered at 345 °C is more wear resistant than the one austempered at 380 °C. Also for only a sliding distance of 3000 m, both exhibited almost same wear resistance. SEM analysis indicates running sliding marks more or less parallel to one another. Spalled layers and large voids which resemble delamination were observed on worn surface of ADI380. This indicated the occurrence of severe wear. Dark patches observed indicate oxidized surface.
Keywords: Austempered ductile iron, coefficient of friction, dry sliding wear, sliding distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10461167 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem
Authors: Mustafa Resa Becan
Abstract:
The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.
Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20091166 Sliding Mode Control of a Bus Suspension System
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.
Keywords: Sliding mode control, bus model, air suspension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701165 Study of Tribological Behaviour of Al6061/Silicon Carbide/Graphite Hybrid Metal Matrix Composite Using Taguchi's Techniques
Authors: Mohamed Zakaulla, A. R. Anwar Khan
Abstract:
Al6061 alloy base matrix, reinforced with particles of silicon carbide (10 wt %) and Graphite powder (1wt%), known as hybrid composites have been fabricated by liquid metallurgy route (stir casting technique) and optimized at different parameters like applied load, sliding speed and sliding distance by taguchi method. A plan of experiment generated through taguchi technique was used to perform experiments based on L27 orthogonal array. The developed ANOVA and regression equations are used to find the optimum coefficient of friction and wear under the influence of applied load, sliding speed and sliding distance. On the basis of “smaller the best” the dry sliding wear resistance was analysed and finally confirmation tests were carried out to verify the experimental results.Keywords: Analysis of variance, dry sliding wear, Hybrid composite, orthogonal array, Taguchi technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27041164 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method
Authors: Abolfazl Mohammadijoo
Abstract:
In this paper, we are investigating sliding mode control approach for trajectory tracking of a two-link-manipulator with wheeled mobile robot in its base. The main challenge of this work is dynamic interaction between mobile base and manipulator which makes trajectory tracking more difficult than n-link manipulators with fixed base. Another challenging part of this work is to avoid chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of sliding mode control approach for desired trajectory.
Keywords: Mobile manipulator, sliding mode control, dynamic interaction, mobile robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5001163 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.
Keywords: Seismic slope stability, sliding displacement, mainshock, aftershock, landslide, earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8991162 Chaos Synchronization Using Sliding Mode Technique
Authors: Behzad Khademian, Mohammad Haeri
Abstract:
In this paper, an effective sliding mode design is applied to chaos synchronization. The proposed controller can make the states of two identical modified Chua-s circuits globally asymptotically synchronized. Numerical results are provided to show the effectiveness and robustness of the proposed method.Keywords: Sliding mode, Chaos synchronization, Modified Chua's circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12861161 Sliding Mode Control of an Internet Teleoperated PUMA 600 Robot
Authors: Abdallah Ghoul, Bachir Ouamri, Ismail Khalil Bousserhane
Abstract:
In this paper, we have developed a sliding mode controller for PUMA 600 manipulator robot, to control the remote robot a teleoperation system was developed. This system includes two sites, local and remote. The sliding mode controller is installed at the remote site. The client asks for a position through an interface and receives the real positions after running of the task by the remote robot. Both sites are interconnected via the Internet. In order to verify the effectiveness of the sliding mode controller, that is compared with a classic PID controller. The developed approach is tested on a virtual robot. The results confirmed the high performance of this approach.Keywords: Internet, manipulator robot, PID controller, remote control, sliding mode, teleoperation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9621160 Wear Behavior of Commercial Aluminium Engine Block and Piston under Dry Sliding Condition
Authors: M. S. Kaiser, Swagata Dutta
Abstract:
In the present work, the effect of load and sliding distance on the performance tribology of commercially used aluminium-silicon engine block and piston was evaluated at ambient conditions with humidity of 80% under dry sliding conditions using a pin-on-disc with two different loads of 5N and 20N yielding applied pressure of 0.30MPa and 1.4MPa, respectively, at sliding velocity of 0.29ms-1 and with varying sliding distance ranging from 260m- 4200m. Factors and conditions that had significant effect were identified. The results showed that the load and the sliding distance affect the wear rate of the alloys and the wear rate increased with increasing load for both the alloys. Wear rate also increases almost linearly at low loads and increase to a maximum then attain a plateau with increasing sliding distance. For both applied loads the piston alloy showed the better performance due to higher Ni and Mg content. The worn surface and wear debris was characterized by optical microscope, SEM and EDX analyzer. The worn surface was characterized by surface with shallow grooves at loads while the groove width and depth increased as the loads increases. Oxidative wear was found to be the predominant mechanisms in the dry sliding of Al-Si alloys at low loads.
Keywords: Wear, friction, gravimetric analysis, aluminiumsilicon alloys, SEM, EDX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25301159 Trajectory Control of a Robotic Manipulator Utilizing an Adaptive Fuzzy Sliding Mode
Authors: T. C. Kuo
Abstract:
In this paper, a novel adaptive fuzzy sliding mode control method is proposed for the robust tracking control of robotic manipulators. The proposed controller possesses the advantages of adaptive control, fuzzy control, and sliding mode control. First, system stability and robustness are guaranteed based on the sliding mode control. Further, fuzzy rules are developed incorporating with adaptation law to alleviate the input chattering effectively. Stability of the control system is proven by using the Lyapunov method. An application to a three-degree-of-freedom robotic manipulator is carried out. Accurate trajectory tracking as well as robustness is achieved. Input chattering is greatly eliminated.Keywords: Fuzzy control, sliding mode control, roboticmanipulator, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471158 Dead-Reckoning Error Calibration using Celling Looking Vision Camera
Authors: Jae-Young Choi, Sung-Gaun Kim
Abstract:
This paper suggests a calibration method to reduce errors occurring due to mobile robot sliding during location estimation using the Dead-reckoning. Due to sliding of the mobile robot caused between its wheels and the road surface while on free run, location estimation can be erroneous. Sliding especially occurs during cornering of mobile robot. Therefore, in order to reduce these frequent sliding errors in cornering, we calibrated the mobile robot-s heading values using a vision camera and templates of the ceiling.Keywords: Dead-reckoning, Localization, Odomerty, Vision Camera
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17831157 Design of a Sliding Controller for Optical Disk Drives
Authors: Yu-Sheng Lu, Chung-Hsin Cheng, Shuen-Shing Jan
Abstract:
This paper presents the design and implementation of a sliding-mod controller for tracking servo of optical disk drives. The tracking servo is majorly subject to two disturbance sources: radial run-out and shock. The lateral run-out disturbance is mostly repeatable, and a model of such disturbance is incorporated into the controller design to effectively compensate for it. Meanwhile, as a shock disturbance is usually non-repeatable and unpredictable, the sliding-mode controller is employed for its robustness to abrupt perturbations. As a result, a sliding-mode controller design based on the internal model principle is tailored for tracking servo of optical disk drives in order to deal with these two major disturbances. Experimental comparative studies are conducted to investigate the effectiveness of the specially designed controller.
Keywords: Mechatronics, optical disk drive, sliding-mode control, servo systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19691156 Effect of Robot Configuration Parameters, Masses and Friction on Painlevé Paradox for a Sliding Two-Link (P-R) Robot
Authors: Hassan M. Alkomy, Hesham A. Elkaranshawy, Ahmed S. Ashour, Khaled T. Mohamed
Abstract:
For a rigid body sliding on a rough surface, a range of uncertainty or non-uniqueness of solution could be found, which is termed: Painlevé paradox. Painlevé paradox is the reason of a wide range of bouncing motion, observed during sliding of robotic manipulators on rough surfaces. In this research work, the existence of the paradox zone during the sliding motion of a two-link (P-R) robotic manipulator with a unilateral constraint is investigated. Parametric study is performed to investigate the effect of friction, link-length ratio, total height and link-mass ratio on the paradox zone.Keywords: Dynamical system, friction, multibody system, Painlevé paradox, robotic systems, sliding robots, unilateral constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47371155 Fuzzy Sliding Mode Control of an MR Mount for Vibration Attenuation
Authors: Jinsiang Shaw, Ray Pan, Yin-Chieh Chang
Abstract:
In this paper, an magnetorheological (MR) mount with fuzzy sliding mode controller (FSMC) is studied for vibration suppression when the system is subject to base excitations. In recent years, magnetorheological fluids are becoming a popular material in the field of the semi-active control. However, the dynamic equation of an MR mount is highly nonlinear and it is difficult to identify. FSMC provides a simple method to achieve vibration attenuation of the nonlinear system with uncertain disturbances. This method is capable of handling the chattering problem of sliding mode control effectively and the fuzzy control rules are obtained by using the Lyapunov stability theory. The numerical simulations using one-dimension and two-dimension FSMC show effectiveness of the proposed controller for vibration suppression. Further, the well-known skyhook control scheme and an adaptive sliding mode controller are also included in the simulation for comparison with the proposed FSMC.Keywords: adaptive sliding mode controller, fuzzy sliding modecontroller, magnetorheological mount, skyhook control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794