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3D Guidance of Unmanned Aerial Vehicles Using
Sliding Mode Approach

M. Zamurad Shah, M. Kemal Özgören, Raza Samar

Abstract—This paper presents a 3D guidance scheme for
Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme
is based on the sliding mode approach using nonlinear sliding
manifolds. Generalized 3D kinematic equations are considered
here during the design process to cater for the coupling between
longitudinal and lateral motions. Sliding mode based guidance
scheme is then derived for the multiple-input multiple-output
(MIMO) system using the proposed nonlinear manifolds. Instead of
traditional sliding surfaces, nonlinear sliding surfaces are proposed
here for performance and stability in all flight conditions. In the
reaching phase control inputs, the bang-bang terms with signum
functions are accompanied with proportional terms in order to reduce
the chattering amplitudes. The Proposed 3D guidance scheme is
implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV
and simulation results are presented here for different 3D trajectories
with and without disturbances.

Keywords—Unmanned Aerial Vehicles, Sliding mode control,
3D Guidance, Path following, trajectory tracking, nonlinear sliding
manifolds.

THE reference trajectory is expressed in the form of lines
and arcs in the 3D space in way-point guidance and

the UAV has to follow it as closely as possible. Generally,
longitudinal and lateral dynamics are decoupled during the
guidance scheme design and two separate guidance schemes
handle the deviations in longitudinal and lateral planes,
respectively. For example, during the design of longitudinal
guidance scheme, generally it is assumed that the vehicle
bank/roll angle is zero. Similarly, it is assumed that the
altitude and speed are held constant while designing the lateral
guidance scheme. But generally it is not true and any guidance
command in one plane have an effect on the other plane too.
The main theme of this paper is derivation of a 3D guidance
scheme that consider all these coupling effects and also the
parametric/input disturbances.

The subject of fundamental guidance principles related
to motion behaviour in a 2D plane and a 3D space is
discussed in detail in [1]. Path generation and its tracking
algorithm for UAVs in 3D space is discussed in [2]. The
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nonlinear path tracking algorithm resembles the line-of-sight
guidance algorithm and lacks robustness in the presence of
parametric uncertainties. In [3], authors address the problem of
coordinated control of multiple UAVs in 3D space under tight
spatial and temporal constraints. Similarly, the path-following
problem of steering an autonomous vehicle along a desired
path is discussed in [4], while tracking a predefined velocity
profile. Both these algorithm rely on accurate measurement of
velocity vector and any uncertainty in velocity is not taken
care in the derivation. Backstepping based nonlinear guidance
algorithm is proposed in [5] for UAVs 3D path tracking.
The proposed guidance law assumes a very simple first order
dynamics for heading and elevation angles, and the coupling
between the two planes is ignored. For detailed discussion
about 2D/3D guidance algorithms, interested readers are
referred to [6].

Direct application of sliding mode control in the outer
guidance loop is normally not feasible and discussed in detail
in [7], [8]. In the authors’ previous work [9], [10], [11], sliding
mode based independent longitudinal and lateral guidance
schemes of UAVs are discussed, and coupling between the
two planes are ignored during the derivation of these guidance
schemes. A novel nonlinear sliding surface for lateral guidance
of UAVs is proposed in [9], and the proposed idea in detail
along with experimental results is discussed in [10]. This
work is the generalization of our previous work and a 3D
guidance scheme for trajectory following of UAVs is proposed
here. Generalized kinematic equations are considered here, and
the problem becomes a guidance scheme for multiple-input
multiple-out (MIMO) system due to coupling between the
two planes. First, it is shown that traditional linear sliding
manifolds are not a feasible solution for 3D trajectory
following problem of UAVs, and nonlinear sliding manifolds
are proposed here that give both performance and stability
guarantee. Based on the proposed nonlinear sliding manifolds,
a nonlinear guidance scheme is derived for the MIMO system.
In order to reduce the chattering in control signal, bang-bang
terms are accompanied with proportional terms in the reaching
phase control design. The proposed guidance is implemented
in 6-dof nonlinear simulation and different scenarios of flight
are simulated. Simulation results in the absence and presence
of disturbances are presented here to show the robustness of
the proposed guidance scheme.

I . INTRODUCTION
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II. PROBLEM FORMULATION

In literature, usually the 3D guidance problem is decoupled
into two separate longitudinal and lateral guidance problems
and coupling between longitudinal and lateral dynamics is
ignored during the derivation of guidance logic. In this paper,
we consider the generalized guidance problem of UAVs
in three dimensional (3D) space. Kinematics and dynamics
equations for aerospace vehicles are discussed in detail in
many books and papers, e.g. [12], [13], [6]. Before the
derivation of state equations for guidance logic design, first
we introduce here the convention and notation of different
variables.
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It is assumed that the earth is flat, non-rotating, and an
approximate inertial reference frame. Standard convention of
coordinate systems and their orientations ([13], [6]) is assumed
here in this paper. The body axes system Oxbybzb is fixed
to the UAV as shown in Fig. 1. The ground axes system
Exyz(ENED) is fixed to the surface of the earth at mean sea
level; where x, y and z are pointed towards north, east and
downward directions, respectively. The local horizontal system
Oxhyhzh moves with the airplane (O is the airplane center of
gravity), but its axes remain parallel to the ground axes. In Fig.
1, all axes systems are shown from side and top views. Let −→V
(= −→

Vg) and −→
Va denote the velocity vectors of the UAV relative

to ground and relative to air respectively. Flight path angle γ
denotes the orientation of ground velocity vector (−→V ) relative
to the local horizon, and the course angle χ is orientation of
ground velocity vector (−→V ) relative to the North. (xN , xE , h)
is the position of UAV in 3D space.

The problem we address here in this paper is that of guiding
a UAV from one waypoint to the next with minimum cross
track and altitude deviations. Let WP1(xN1 , xE1 , h1) and
WP2(xN2 , xE2 , h2) be two successive waypoints in 3D space
as shown in Fig. 1. Looking from top view, let P be the nearest
point to the vehicle on the arc and χref be the angle of tangent
line w.r.t. north at point P . Reference flight path angle γref is
the angle of desired path in the longitudinal plane. The cross
track and altitude (normal) errors are denoted by ye and he

respectively. The main task of the guidance algorithm is to

keep the errors (ye and he) as small as possible.

Guidance

Mission

Required roll (�req)

Desired Position
& direction

Control UAV
Dynamics

Elevator,
Aileron

Rudder

Current 3D position & Ground velocity vector

Roll, pitch, AoA

Required Lift force (Lreq)

Roll, pitch & yaw rates

The approach used in this paper is based on separate design
of the inner control loop and outer guidance loop. We will
assume that the inner control loop is in place and we will
focus on the guidance logic design. Fig. 2 shows the basic
structure of guidance and control scheme. The outer guidance
block gets current position and ground velocity vector −→

V
inputs from sensor and the reference path information from
pre-planned mission plan (which can be modified during
flight). On the basis of this information, the guidance block
generates longitudinal and lateral acceleration commands for
the inner control loop to follow. These longitudinal and lateral
acceleration commands can also be represented by a reference
angle of attack (αref ) and a reference bank/roll angle (φref )
in case of bank-to-turn vehicles like UAVs. The inner control
loop commands the control surfaces (elevators, aileron and
vertical rudder) for following these reference commands. Here,
we shall focus ourselves on the design of outer guidance logic
that ensures tracking of the desired 3D path. This will be done
using the sliding mode approach.

A. System Dynamics

Many flight mechanics books and papers [12], [13], [6]
discuss the equations of motion for guidance and control
of aerospace vehicles in detail. In this paper, we discuss it
briefly and interested readers are referred to [6] for a detailed
discussion. In 3D space, the forces acting on an aerospace
vehicle during bank to turn and climb/decent maneuvers are
summarized in Fig. 3. Summing up all the forces in the
longitudinal and lateral planes, we have:

L cosφ = mV γ̇ +mg cos γ (1)
L sinφ = m(V cos γ)χ̇,

where L is the lift force, φ is the body roll angle, m is the
mass, g is the gravitational acceleration and V (= Vg) is the
velocity of the vehicle relative to ground. Equation (1) can be
written as:

γ̇ =
g

V

(
L cosφ

mg
− cos γ

)
(2)

χ̇ =
L sinφ

mV cos γ
,

where γ and χ are the state variables. An important
dimensionless term L

mg in the above equation is known as the

Fig. 1 Coordinate systems and their conventions

Fig. 2 Guidance and control structure
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(a) side view during coordinated turn while climb/decent

O

L sin�

Center of turn

(b) Top view during coordinated turn while climb/decent
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force

xh�

mg mV�.

L cos �

load factor, i.e. the number of normal g′s that an aerospace
vehicle experiences during flight.

As the main theme of this paper is outer guidance loop
design, so here we will make some assumptions related to the
inner control loop. We assume here that: the inner control loop
is already designed and it is fast enough (5-10 times faster than
outer loop). Based on this assumption, we have Lreq ≈ L and
φreq ≈ φ, this implies that (2) can be approximated as:

γ̇ =
g

V

(
Lreq cosφreq

mg
− cos γ

)
(3)

χ̇ =
Lreq sinφreq

mV cos γ
.

In these two equations, Lreq (the required or reference Lift
force) and φreq (the required/reference roll angle) are the

two control variables. These control variables are generated
by outer guidance loop to follow the 3D path. Other state
equations can be derived from the components of ground
velocity (V ). 3D position (xN , xE , h) of an aerospace vehicle
in ground axes system Exyz can be determined as:

ẋN = (V cos γ) cosχ, ẋE = (V cos γ) sinχ, (4)
ḣ = V sin γ.

These state equations can be written in error form. Let
WP1 − WP2 be the desired path in 3D space as shown in
Fig. 1, χref and γref are the desired course and flight path
angles, respectively at any instance. Assuming χe = χ−χref

and γe = γ − γref ; we have the following state equations in
error form:

ḣe = V sin γe (5)
ẏe = V cos γ sinχe

γ̇e =
g

V

(
Lreq cosφreq

mg
− cos γ

)
− γ̇ref

χ̇e =
Lreq sinφreq

mV cos γ
− χ̇ref ,

where he (error in altitude perpendicular to the reference path),
ye (cross-track error), γe (error in flight path angle) and χe

(error in course angle) are the four state variables. Control
inputs are Lreq (required Lift force) and φreq (required roll
angle), that the guidance loop has to generate for following
the desired mission and bring back the vehicle back on the
desired mission in case of any deviation.

III. PROPOSED GUIDANCE SCHEME

Sliding mode based control law design is a two step process
in MIMO systems: the first step, stable sliding manifolds
(number of sliding manifolds equal to the number of control
inputs) are designed, and then a suitable control logic is
designed to reach the sliding manifolds and maintain sliding
motion for subsequent time despite the presence of model
imprecision and disturbances [14], [15]. The idea is to force
the trajectory of the system towards the sliding manifolds in
the reaching phase, and once achieved, the system states must
be constrained to remain on the sliding surfaces thereafter.
Although sliding mode control has good robustness properties,
one major difficulty is control chattering. Chattering is
undesirable, since it involves extremely high frequency control
activity, and furthermore may excite high-frequency neglected
dynamics of the system. Saturation and sigmoid functions
are commonly used as ‘filters’ to smoothen the discontinuous
control signal so that it is realizable by mechanical hardware.

Linear sliding surfaces (i.e. linear combination of states)
is commonly used as sliding manifolds but it is not feasible
solution in every case. In the subsequent section, it is shown
that a linear sliding surface is not a good choice for guidance
law design of UAVs. Good performance for all scenarios as
well as the stability of sliding surfaces are the main issues with
linear sliding surfaces and hence non-linear sliding surfaces
are proposed here for guidance logic design.

Fig. 3 Forces acting on a UAV during accelerating climb while coordinated
turn
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A. Proposed Sliding Manifolds

First, let us choose two linear sliding surface functions s1 =
γe + λ1he and s2 = χe + λ2ye for some positive scalars
λ1 and λ2 as shown in Fig. 4. In case of non-zero he, it is
desired that he → 0 as quickly as possible. Convergence of
he to zero depends on the selection of λ1, a bigger value of
λ1 gives fast convergence and is therefore desired for good
performance. Similarly a larger value of λ2 is also desirable
for good performance in the lateral plane. On the other hand,
sliding surfaces can become unstable for bigger values of λ1

and λ2. To see this it may be noted that motion on the sliding
surface is described by s1 = 0 and s2 = 0 which yields
γe = −λ1he and χe = −λ2ye. After substitution in (5), we
have:

ḣe = −V sin(λ1he), (6)
ẏe = −V cos γ sin(λ2ye)

For positive he, the term sin(λ1he) may be negative for
large values of λ1 and he. Hence ḣe becomes positive for a
positive he, implying instability. Similarly, ẏe can be positive
for a positive ye and large λ2, implying an unstable sliding
surface. Both stability and performance is not possible with
these linear sliding surfaces.
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In our previous work [10], [11], we proposed two
independent nonlinear sliding surfaces for lateral and
longitudinal guidance of UAVs. These sliding surfaces can
be utilized here for 3D guidance of UAVs also. For good
performance in all situations and stability of the sliding
surfaces, we choose the following nonlinear sliding surfaces
for 3D guidance of UAVs (see Fig. 4):

s1 = χe + C1 arctan(C2ye) = 0 (7)
s2 = γe + C3 arctan(C4he) = 0

where the constants C1, C2, C3 and C4 are real positive
numbers and C1, C3 ≤ 1. Compared to the traditional linear
sliding surfaces, here we have four parameters instead of
two. For detailed discussion about these constants, interested
readers are referred to the [10], [11].

Stability of the sliding manifolds:
Stability of the sliding surfaces proposed above can be
proved using the equations of motion during sliding. Motion

on the sliding surfaces is represented by s1 = 0 and
s2 = 0, which implies χe = −C1 arctan(C2ye) and γe =
−C3 arctan(C4he). Using (5), we have:

ẏe = −V sin [C1 arctan (C2ye)] cos γ, (8)
ḣe = −V sin [C3 arctan (C4he)] .

Here V and cos γ are positive variables. Since C1 ≤ 1,
sin [C1 arctan (C2ye)] is positive for any positive ye, implying
a negative ẏe, and vice-versa for negative ye. Similarly, ḣe is
negative for positive he, and vice-versa. Once ye and he will
be zero, the other two state variable χe and γe will also be
zero while sliding on the manifolds described in (7). Hence,
we have two stable sliding surfaces and all state variables will
converge to zero on the proposed nonlinear surfaces.

B. 3D Guidance Logic

After designing stable sliding manifolds, the next step is
derivation of control law to reach the sliding manifolds and
maintain motion on them subsequently. Generally, the control
law is derived using the Lyapunov function W = 1

2s
2.

A sliding phase control is derived from ṡ = 0 and then
‘−k sgn(s)’ is added to cater for uncertainties and un-modeled
dynamics. To reduced chattering in the control signal, here we
derive control law from ṡ = −k� sgn(s)− ks. This yields:

χ̇e +
C1C2

1 + C2
2y

2
e

ẏ = −k�1 sgn(s1)− k1s1, (9)

γ̇e +
C3C4

1 + C2
4h

2
e

ḣe = −k�2 sgn(s2)− k2s2

or

Lreq sinφreq

mV̂ cos γ
− χ̇ref +

C1C2

1 + C2
2y

2
e

V̂ cos γ sinχe (10)

= −k�1 sgn(s1)− k1s1,

Lreq cosφreq

mV̂
− g cos γ

V̂
+

C3C4

1 + C2
4h

2
e

V̂ sin γe

−γ̇ref = −k�2 sgn(s2)− k2s2,

where V̂ is the measured/estimated value of ground
velocity V , and it is assumed here that all other
parameters have negligible uncertainty (accurately measurable
or known values). After rearranging the terms, we have the
following expression for control variables Lreq sinφreq and
Lreq cosφreq:

Lreq sinφreq = mV̂ cos γ
( −C1C2

1 + C2
2y

2
e

V̂ cos γ sinχe(11)

+ χ̇ref − k�1 sgn(s1)− k1s1

)
,

Lreq cosφreq = mV̂
(g cos γ

V̂
− C3C4

1 + C2
4h

2
e

V̂ sin γe

+ γ̇ref − k�2 sgn(s2)− k2s2

)
.

These are the force components required in longitudinal and
lateral inertial planes to keep the vehicle on track in 3D space.

Fig. 4 Linear and proposed nonlinear sliding surfaces
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These can easily be converted to Lreq (required Lift force) and
φreq (required roll angle) to follow the desired mission. Also,
Lreq can be written in the form of αreq or θreq as per the
structure of the inner loop controller.

C. Reachability Condition

Using the global positive definite Lyapunov function W =
1
2s

2, condition on control variables (kΔ1 , k1, kΔ2 , k2) can be
derived to ensure reachability despite parametric uncertainties
and disturbances. These feedback gains can be chosen so that
Ẇ = sṡ < 0 in the domain of attraction [14]. Here in the case
of MIMO system:

s1ṡ1 < 0 and s2ṡ2 < 0. (12)

These inequalities imply

s1

[
Lreq sinφreq

mV cos γ
− χ̇ref +

C1C2

1 + C2
2y

2
e

V cos γ sinχe

]
< 0 (13)

s2

[
Lreq cosφreq

mV
− g cos γ

V
+

C3C4

1 + C2
4h

2
e

V sin γe

−γ̇ref

]
< 0

Substituting values of control variables Lreq sinφreq and
Lreq cosφreq from (11), we have:

s1

[
V̂

V

( −C1C2

1 + C2
2y

2
e

V̂ cos γ sinχe + χ̇ref

)
(14)

− χ̇ref +
C1C2

1 + C2
2y

2
e

V cos γ sinχe

− V̂

V
k�1 sgn(s1)− V̂

V
k1s1

]
< 0

s2

[
V̂

V

( −C3C4

1 + C2
4h

2
e

V̂ sin γe + γ̇ref

)

− γ̇ref +
C3C4

1 + C2
4h

2
e

V sin γe

− V̂

V
k�2 sgn(s2)− V̂

V
k2s2

]
< 0

Assuming a maximum measurement uncertainty in V̂ of
Ṽ = V̂ − V , i.e. V̂ = V + Ṽ , (14) becomes:

s1

[
(2V + Ṽ )

( −C1C2

1 + C2
2y

2
e

Ṽ cos γ sinχe

)
+ Ṽ χ̇ref (15)

−V̂ k�1 sgn(s1)− V̂ k1s1

]
< 0

s2

[
(2V + Ṽ )

( −C3C4

1 + C2
4h

2
e

Ṽ sin γe

)
+ Ṽ γ̇ref

−V̂ k�2 sgn(s2)− V̂ k2s2

]
< 0.

The control variables k�1 and k�2 are designed to cater for
parametric uncertainties; in other words, the left hand sides of

(15) are negative definite, if

V̂ k�1 > (2V + Ṽ ) C1C2

1+C2
2y

2
e
Ṽ cos γ| sinχe|+ Ṽ |χ̇ref |(16)

V̂ k�2 > (2V + Ṽ ) C3C4

1+C2
4h

2
e
Ṽ | sin γe|+ Ṽ |γ̇ref |

From implementation point of view, two options are
possible: a simple option is to find the maximum value of these
control gains for the extreme case and use these maximum
control values in guidance logic, the other option is to keep
the control gains adaptive and select their values depending
on the state variable at every iteration. Here we have used the
first strategy and in extreme case, we have:

k�1
> 0.707 (2Vmax+Ṽ )Ṽ

Vmin
C1C2 +

Ṽ
Vmin

|χ̇ref | (17)

k�2 > 0.707 (2Vmax+Ṽ )Ṽ
Vmin

C3C4 +
Ṽ

Vmin
|γ̇ref |.

From above (17), it is clear that the control gains k�1 and
k�2 are directly proportional to the uncertainty Ṽ in velocity
vector. The other control variables k1, k2 > 0 can be used for
fast convergence towards sliding surface and a smooth control
signal with less chattering.

IV. SIMULATION RESULTS

Proposed 3D guidance scheme (11) is implemented in
6-dof nonlinear simulation of scaled YAK-54 UAV [9] and
different scenarios are simulated. Nonlinear 6-dof simulation
has complete nonlinear dynamics model of UAV [16] with
option of different input disturbances like wind. Nonlinear
dynamic model of the simulation is validated through flight
experiments for different scenarios [10]. Sliding surface
parameters C1, C2, C3 and C4 are chosen as 0.7, 0.007,
0.3 and 0.01, respectively. Control gains k�1 , k�2 , k1 and
k2 are chosen as 50.0, 190.0, 120.0 and 100.0, respectively
for implementation in simulation. Signum function (sgn(s)) is
approximated by s

|s|+ε to avoid chattering in control signal.
Proposed guidance law (11) generates required roll angle
(φreq) and required lift force (Lreq). As per the structure of
inner control loop, θr command is generated for the inner
control loop using the relation θ = α + γ. Two cases are
simulated and results are shown here:

A. Nominal case

Simulation results for a nominal pre-planned trajectory are
shown in Fig. 5-7. In Fig. 5, reference and actual 3D trajectory
of UAV are shown along with lateral and longitudinal errors.
Maximum error in trajectory following is ∼ 2m in this
case. Corresponding reference flight path and reference course
angles are shown in Fig. 6 along with actual angles. Required
pitch angle and required roll angle generated by the guidance
loop are shown in Fig. 7 along with actual angles tracked by
inner control loop.

B. With disturbances

The performance of the proposed guidance logic is
evaluated in the presence of wind and GPS outage. An east
wind of 4m/s is applied throughout in this case. Also, GPS
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Fig. 6. Flight path and course angle of UAV.
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Fig. 8. Desired and achieved 3D trajectory of UAV.

Fig. 5 Desired and achieved 3D trajectory of UAV
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shows error in the position of UAV at 200s after few seconds
outage. In Fig. 8, actual and desired trajectories are shown, the
guidance logic bring back UAV on desired path successfully.
In the presence of wind, the maximum steady state error in
position is ∼ 10m. In Fig. 9, motion of the states variable on
the sliding surface is shown in the presence of wind. First,
states trajectory is attracted towards the sliding surface and
then maintained on it for subsequent time. Required pitch
angle and required roll angle generated by the guidance loop
are shown in Fig. 10.

In this paper, we generalized our previous 2D guidance
scheme of UAVs for 3D space case. Instead of traditional
decoupled longitudinal/lateral planes, here we used the
generalized kinematics equations for guidance logic design.
Based on these generalized equations, here we have a
MIMO system that has two control variables. Based on
two nonlinear sliding manifolds, a guidance scheme is

proposed here for trajectory tracking of UAVs in 3D space.
To reduce the chattering in control signal, a reaching
control law that consists of bang-bang(signum function)
and proportional terms is used here to reach and maintain
the sliding motion. The Proposed 3D guidance scheme is
implemented on a 6-degrees-of-freedom (6-dof) simulation of
a UAV and simulation results are presented here for different
3D trajectories with/without disturbances. It is observed
that the accuracy and smoothness requirements are fulfilled
satisfactorily.
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