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Abstract—This paper deals with the design of a moving sliding 
surface in a variable structure plant for a second order system. The 
chattering phenomena is also dealt with during the switching process 
for an unstable sliding surface condition. The simulation examples 
considered in this paper shows the effectiveness of the sliding mode 
control method used for the design of the moving sliding surfaces. A 
simulink model of the continuous system was also developed in 
MATLAB-SIMULINK for the design and hence demonstrated.  The  
phase  portraits  and  the  state  plots  shows  the  demonstration  of  
the  powerful  control  technique  which  can  be  applied  for  second  
order  systems.  

Keywords—Sliding mode control, VSC, Reaching phase, Sliding 
phase,  Moving surfaces, Chattering, Trajectories. 

 

I. INTRODUCTION 

ARIABLE structure control (VSC) with sliding mode 
control was first proposed and elaborated in the early 

1950’s in the Soviet Union by Emelyanov and several co-
researchers [6], [7], [8]. In their pioneer works, the plant 
considered was a linear second-order system modeled in phase 
variable form. Since then, VSC has developed into a general 
design method being examined for a wide spectrum of system 
types including nonlinear systems, multi-input / multi-output 
systems, discrete- time models, large-scale and infinite-
dimensional systems, and stochastic systems.  

In addition, the objectives of VSC have been greatly 
extended from stabilization to other control functions. The 
most distinguished feature of VSC is its ability to result in very 
robust control systems; in many cases invariant control systems 
result. Loosely speaking, the term “invariant” means that the 
system is completely insensitive to parametric uncertainty and 
external disturbances. Today, research and development 
continue to apply VSC to a wide variety of engineering 
systems.  The theory of sliding model control (SMC) is based 
on the concept of varying the structure of the controller by 
changing state of the system in order to obtain a desired 
response [25]. Generally, a switching control action is used to 
switch between different structures and the system state is 
forced to move along the chosen manifold, called the switching 
manifold which determines the closed loop system behavior 
[26], [27]. 

Variable Structure Control Systems (VSCS) have been 
developed in the west after the initial work of Itkis and Utkin 
in the USSR and have taken many forms.  The use of VSCS 
has been developed in the USA and Europe by workers like 
Zinober, White, Young, Ryan, Slotine, Spurgeon, Edwards and 

Sastry, covering model following, uncertainty and non-linear 
systems. Variable Structure Control Systems essentially try to 
keep the dynamic behavior of a system constant by 
dynamically varying the feedback gains of the system.   

A basic VSCS control system is shown in the Fig. 1 below.  
The compensator blocks C and H contain gains that the VSCS 
switches dynamically in order to maintain the performance of 
the closed loop system.  The switching is controlled by 
reference to a performance measure or switching function that 
is constructer from either the state vector or the output vector 
of the system.  This performance measure is used in a 
switching strategy to minimize the deviation of the system 
performance away from the desired performance.  The output 
from the performance measure is zero when the system is 
performing correctly and the switching strategy is designed to 
maintain the performance measure at zero at all times. 

 

 
 

Fig.  1   Stable Resultant Structure. 
 

The paper is organized as follows.  Following the brief 
introduction in section 1, sliding mode design in VSC is dealt 
with in section 2.  Various phases such as the reaching phase 
and the sliding phase for systems is considered in section 3.  
Time varying systems is presented in section 4.  Section 5 
gives the design of stability of systems, whereas section 6 
discusses about the chartering phenomenon in sliding mode 
design.  Uniqueness of sliding surfaces is presented in Section 
7.  The simulation results are presented in section 8.  The paper 
concludes with the conclusion presented in section 9 followed 
by the references. 

II. SLIDING  MODE  IN  VSC 

In Variable Structure systems the system is assumed to be 
consisting of continuous subsystems known as structures. 
These structures are changed or switched depending on the 
state of the system [1]. The gain of a system may be changed 
or the transfer function of the system may be completely 
changed in these types of systems. The times (states) at which 
the structures change contribute to discontinuity surfaces in the 
phase planes. These surfaces are also called as switching 
surfaces. If the switching surface satisfies the condition of 

V 
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having positive attraction then such a surface would become a 
sliding surface. A simple example of such a variable structure 
system would be a second order system having system 
equations 

                      
1 2

2 1 2

x x
x a x b x u

=
= + +

  (1) 

where 21, xx are the states of the system and a and b  are 
the system parameters. The system has a feedback input given 
by 
                             1xu Ψ−=    (2) 

The parameter Ψ is a variable parameter that takes values 
α  and β  as the structure changes. Suppose the system with 
input as α has complex eigen-values with positive real part 
and the system with input as β  has eigen-values real but one 
positive and one negative, then the system trajectories in the 
two structures are both unstable as shown in Fig. 2 The 
complex eigen-values give an unstable focus whereas the one 
positive and one negative real eigen-value give a saddle point 
[2], [3]. 

 
Fig.  2 Two unstable structures. 

 
If we observe carefully we can notice that the two unstable 

structures have certain regions of stability, like the describing 
point moves towards the saddle point along the eigenvector 
corresponding to the negative eigen-value. To have the desired 
regions of the two structures in the resultant system, two 
switching surfaces are selected [4]. 

                         
0

0

21

1

=+=
=

xxcs
x

   (3) 

Selecting the switching law from these two equations we get 

                  
⎩
⎨
⎧

>
>

=Ψ
0
0

1

1

sx
sx

β
α

    (4) 

The phase portrait of the resultant system is as shown in Fig. 
3. As we can see that the switching surface 01 =x  has 
attraction properties only on one side of the surface, no sliding 
occurs but the switching surface s  has attraction property on 
both sides of the surface as a result this surface becomes the 
sliding surface of the system.  If we look at the resultant 
motion on the sliding surface, the describing point slides 

towards the equilibrium point and hence the closed loop 
system is stable. 

 
Fig.  3  Stable Resultant Structure. 

 

III. VARIOUS PHASES OF SLIDING MODE 

The sliding mode control can be viewed as a control process 
consisting of two important phases, 

1. The reaching phase : 
The reaching phase is the part where the describing point 

starts from its initial condition and moves towards the sliding 
surface. In this phase the point follows the system trajectories 
corresponding to the fixed input system. 
 

2. The sliding phase : 
This is the phase in which the describing point moves only 

on the desired sliding surface. In this phase the describing 
point does not necessarily follow any system trajectory that 
was present in the original fixed input system. This is because 
at the sliding surface the input continuously switches, and the 
system description is essentially discontinuous.  

To find the equation of the system along the sliding surface 
many methods have been proposed. This is due to the fact that 
the differential equations have a non-analytic right hand side, 
which is the relay type discontinuity. Equivalent control 
method is one of the methods used to solve this problem. 
 

Consider a linear time invariant nth order plant with scalar 
control 
 ( ) ( ) ( )x t A x t Bu t= +    (5) 
where matrix A  of size nn × defines the system 
transformation matrix and vector b the 1×n  input vector. 
The sliding surface is defined as 
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⎡
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ccccs

xCs

   (6) 

 
The vector C  consist of coefficients that describe the 

sliding surface in terms of the state vector x . The sliding 
surface defined such a way is called a hyper surface, i.e., it is 
one dimension lesser than the system order. The surface need 
not be a plane (or line in case of second order system) always, 
the surface can be of any shape.  

In that case the vector C  is the gradient of the sliding 
surface lets say G . If the sliding surface is a plane then the 
gradient of the matrix is the matrix itself. The value s  
specifies the distance of the point from the sliding surface, 
hence 0=s implies the point is on the sliding surface. The 
scalar input 

 ∑
=

Ψ−=
n

i
ii xu

1
   (7) 

Differentiating Eqn. (6) and the substituting Eqn. (5), we get 

                          
ubCxACs

xCs
+=

=
  

on the sliding surface 0=s and for the sliding to exist we 
must have 0=s . This gives us the equivalent input. 
Assuming that Cb is invertible we get 

 ( ) CAxCbueq
1−−=   (8) 

Substituting the equivalent input into the system Eqn. (5), we 
get an autonomous system that describes the motion of the 
describing point on the sliding surface. 

 ( ){ }AxCCbbIx 1−−=    (9) 
Once, on the sliding surface the system can be thought of as 

a ( )1−n dimensional system or a system on its invariant set. 
An invariant set is a set such that once the system state enters 
the subset it cannot leave the subset. Adding another sliding 
surface i.e., equivalent to adding another relay input, the 
system dimension may be further reduced so as to achieve a 
sliding not only on the two individual surfaces but also on the 
intersection of the sliding surfaces as shown in Fig. 4.  
 

In such a case, the describing point would first move along 
its natural system trajectories till it first intersects a single 
sliding surface, it will then slide along the surface following 
some trajectory of the system till it intersects with the second 
sliding surface and the slides along the intersection of the 
sliding surfaces till it reaches the system equilibrium point. 

 
Fig. 4  Sliding surface in 3 D plane. 

In the case of two or more sliding surfaces, the vector C  
corresponding to the coefficients describing the sliding surface 
will become a matrix. Thus an n order system having )1( −n  
sliding surfaces will have the matrix C of size 
{ }nn ×− )1( and the sliding constraints look like given in the 
Eqn. (10).   
 

We assumed that 0=s , as a result the input is called the 
equivalent control input and the corresponding surface is called 
the ideal sliding surface. Practically 0≠s , in such a case the 
input is called the actual input and the sliding surface is called 
the real sliding surface. 
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(10) 

IV. TIME VARYING SYSTEMS 

In the case of a time varying system, we assume the system 
transformation matrix and the input matrix to have time 
varying coefficients. The system would then be represented as 

 utbxtAx )()( +=  (11) 

In such a system, the input parameters cannot be selected as 
time varying, i.e., one has to select a constant valued α and 
β . The method used to determine input bounds for a sliding 
condition over a local area is by finding the bounds on the 
parameters )(ta and )(tb . The constraints that one obtains so 
are : 

Case for 0>s : 

             1332211 xCbxaCxaCxaC α<++  (12) 

where ( )( )taa ii sup=  and ( )( )tbb inf=    (13) 
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Case for 0<s : 
           1332211 xCbxaCxaCxaC β>++  (14) 

 where ( )( )taa ii inf=  and ( )( )tbb sup=  (15) 
 

However, we can see that when the variation of  )(ta  and 
)(tb  is very large the bounds on the input are at the extreme 

values to take care of the worst conditions that may occur in 
the system.  

As a result, this approach is not very efficient and hence 
results in higher input bounds. 
 

V. STABILITY OF SYSTEMS 

Satisfying only the reaching condition does not mean that the 
describing point will slide along the surface. Similarly, 
satisfying the sliding condition does not imply that the system 
will be stable.  

This happens when the Fillipov’s resultant of the force 
vectors acting on the two sides of the sliding surface do not 
point in the direction of the equilibrium point, but in the 
opposite direction. This may cause the describing point to 
exponentially escape to infinity along the sliding surface as 
shown in the Fig. 5. 

To check the stability of the sliding surface, one can use the 
Lyapunov second method of determining stability. It states that 
if the projection of the system trajectories on the sliding 
surfaces are stable then the system is stable. The theorem can 
thus be formulated as: 

Theorem : If there exist a function ( )txsv ,, where s  is the 
distance from the sliding surface and x  the states variables, 
which is positive definite i.e. it satisfies the following 
conditions. 
1. ( ) 0,, >txsv  with 0≠s  and arbitrary x  and t . 

2.  ( )txsv ,,  is continuous and differentiable. 

3.  ( ) 0,,0 =txv  for all x and t . 

 and its derivative ( )txsv ,, is negative everywhere except 
the discontinuity surface, then the system is stable. 

 

There is no specific method to find the Lyapunov function 
candidate however V.I. Utkin [9] has discussed the method of 
using quadratic forms to find the sliding domain. 
 

VI. CHATTERING 

The chattering phenomenon primarily occurs due to the 
existence of non-ideal relays, having hysteresis effects and 
finite time delays in switching of the output.  

Thus, at all practical switching surfaces there exists a finite 
amount of chatter. The phenomenon can be best explained with 
a diagram as shown below in Fig. 6. 

 
Fig. 5  Lyapunov  method  of  determining  stability. 

 

 
Fig. 6  Chattering phenomenon. 

 

VII. UNIQUENESS OF SLIDING SURFACES 

Systems discussed so far are linear systems. In case of linear 
systems, the real sliding surfaces in the presence of non-
idealities can be shown to uniquely approach the ideal sliding 
surfaces determined by the equivalent control method, as the 
non-idealities are taken to tend to zero. But there are cases 
where the system is nonlinear with respect to input, and the 
input is either scalar or vector. The validity of equivalent 
control method for determining the sliding equation for such 
cases has been discussed [28]. 

 

VIII. SIMULATION 

Two case studies of CT systems were considered. One is the 
moving  sliding surface in  a  variable  structure  plant  for  a  
process  control  system modeled  as  a  second  order  plant  as 
shown in Fig. 7 and  the  other  is  the  unstable  sliding  
surface  with  chattering  phenomenon again  for  a  second  
order  simple  pendulum  system  modeled  as  a  undamped  
system  as shown in Fig. 10.  Both the simulink models are 
developed for second order continuous time systems [28].  

Simulation 1 : Moving sliding surface in variable structure 
plant. 
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Fig. 7  Moving sliding surface for a process control system. 
 

Description: The second order system has a transfer function of 

01.12.0
1

2 ++ ss
. 

The switching surfaces selected were 05 =+ xx  and a 
moving sliding surface that is a function of error in x.  

The sliding surface is hence not fixed, but changes slope in a 
region where stable sliding properties are satisfied.  

The initial conditions were 90=x  and 70−=x . The 
results of simulation are as follows.   

The sliding mode controller when applied to the plant gave 
the following results shown in Figs. 8 and 9 respectively. 

 
Fig. 8  Phase portrait of the model in Fig. 7. 

 
Fig. 9  Plot of states as a function of time. 

Simulation 2 : Unstable sliding surface and chattering 
phenomenon. 

 
Fig. 10  Unstable sliding surface model. 

 
Description: The second order system has a transfer function of 

01.12.0
1

2 ++ ss
. The switching surfaces selected were 

0=x  and 018.0 =− xx . The sliding surface is 
018.0 =− xx  but the system is unstable. The initial 

conditions were 90=x  and 70−=x . The chattering 
phenomenon is enhanced by use of relay with large hysteresis. 
The results of simulation are as shown in Figs. 11 and 12  
respectively.  
 

IX. APPLICATIONS  OF  THE  DESIGNED  CONTROL  TECHNIQUE 

The application of sliding mode is vast and can be applied to 
both linear and non-linear systems. However for linear systems 
the technique is not used since there are other well defined 
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methods for arbitrary pole placement. However the concept of 
such control for non-linear systems do not exist as yet. Sliding 
mode control provides in most cases a simple and easier 
method of controller design. It also can be used to design 
optimal controllers. Some of the applications where sliding 
mode has been used are robot control, aircraft control, space 
control, engine control, nuclear control, etc.,. 
 

 
 

Fig. 11  Phase portrait for the model shown in Fig. 10. 
 

 
 

Fig. 12  Plot of states as a function of time. 
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