Search results for: Sensor Modalities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 804

Search results for: Sensor Modalities

294 Design and Implementation of Cricket-based Location Tracking System

Authors: Byung Ki Kim, Ho Min Jung, Jae-Bong Yoo, Wan Yeon Lee, Chan Young Park, Young Woong Ko

Abstract:

In this paper, we present a novel approach to location system under indoor environment. The key idea of our work is accurate distance estimation with cricket-based location system using A* algorithm. We also use magnetic sensor for detecting obstacles in indoor environment. Finally, we suggest how this system can be used in various applications such as asset tracking and monitoring.

Keywords: Cricket, Indoor Location Tracking, Mobile Robot, Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
293 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles

Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl

Abstract:

Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.

Keywords: Neural network, aerodynamic angles, virtual sensor, unmanned aerial vehicle, air data system, flight test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
292 Gas Sensing Properties of SnO2 Thin Films Modified by Ag Nanoclusters Synthesized by SILD Method

Authors: G. Korotcenkov, B. K. Cho, L. B. Gulina, V. P. Tolstoy

Abstract:

The effect of SnO2 surface modification by Ag nanoclusters, synthesized by SILD method, on the operating characteristics of thin film gas sensors was studied and models for the promotional role of Ag additives were discussed. It was found that mentioned above approach can be used for improvement both the sensitivity and the rate of response of the SnO2-based gas sensors to CO and H2. At the same time, the presence of the Ag clusters on the surface of SnO2 depressed the sensor response to ozone.

Keywords: Ag nanoparticles, deposition, characterization, gas sensors, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
291 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform

Authors: Shih-Wen Hsiao, Yi-Cheng Tsao

Abstract:

In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.

Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple kinect sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
290 An Experimental Multi-Agent Robot System for Operating in Hazardous Environments

Authors: Y. J. Huang, J. D. Yu, B. W. Hong, C. H. Tai, T. C. Kuo

Abstract:

In this paper, a multi-agent robot system is presented. The system consists of four robots. The developed robots are able to automatically enter and patrol a harmful environment, such as the building infected with virus or the factory with leaking hazardous gas. Further, every robot is able to perform obstacle avoidance and search for the victims. Several operation modes are designed: remote control, obstacle avoidance, automatic searching, and so on.

Keywords: autonomous robot, field programmable gate array, obstacle avoidance, ultrasonic sensor, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
289 A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives

Authors: N. Ben Si Ali, N. Benalia, N. Zarzouri

Abstract:

Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.

Keywords: Motor drive, sensorless control, adaptive observer, stator resistance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
288 Electro-Thermal Imaging of Breast Phantom: An Experimental Study

Authors: H. Feza Carlak, N. G. Gencer

Abstract:

To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.

Keywords: Medical diagnostic imaging, breast phantom, active thermography, breast cancer detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
287 Internet of Things Applications on Supply Chain Management

Authors: B. Cortés, A. Boza, D. Pérez, L. Cuenca

Abstract:

The Internet of Things (IoT) field has been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the Internet. These fields have come into focus recently on the enterprises, and there is some evidence of the use and implications in supply chain management, while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management.

Keywords: Internet of Things, Sensing Enterprises, Supply Chain Management, Industrial, Production Systems, Sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5348
286 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: Dimensional affect prediction, Output-associative RVM, Multivariate regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
285 Extraction of Craniofacial Landmarks for Preoperative to Intraoperative Registration

Authors: M. Gooroochurn, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs

Abstract:

This paper presents the automated methods employed for extracting craniofacial landmarks in white light images as part of a registration framework designed to support three neurosurgical procedures. The intraoperative space is characterised by white light stereo imaging while the preoperative plan is performed on CT scans. The registration aims at aligning these two modalities to provide a calibrated environment to enable image-guided solutions. The neurosurgical procedures can then be carried out by mapping the entry and target points from CT space onto the patient-s space. The registration basis adopted consists of natural landmarks (eye corner and ear tragus). A 5mm accuracy is deemed sufficient for these three procedures and the validity of the selected registration basis in achieving this accuracy has been assessed by simulation studies. The registration protocol is briefly described, followed by a presentation of the automated techniques developed for the extraction of the craniofacial features and results obtained from tests on the AR and FERET databases. Since the three targeted neurosurgical procedures are routinely used for head injury management, the effect of bruised/swollen faces on the automated algorithms is assessed. A user-interactive method is proposed to deal with such unpredictable circumstances.

Keywords: Face Processing, Craniofacial Feature Extraction, Preoperative to Intraoperative Registration, Registration Basis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
284 A New Approach to Signal Processing for DC-Electromagnetic Flowmeters

Authors: Michael Schukat

Abstract:

Electromagnetic flowmeters with DC excitation are used for a wide range of fluid measurement tasks, but are rarely found in dosing applications with short measurement cycles due to the achievable accuracy. This paper will identify a number of factors that influence the accuracy of this sensor type when used for short-term measurements. Based on these results a new signal-processing algorithm will be described that overcomes the identified problems to some extend. This new method allows principally a higher accuracy of electromagnetic flowmeters with DC excitation than traditional methods.

Keywords: Electromagnetic Flowmeter, Kalman Filter, ShortMeasurement Cycles, Signal Estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
283 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: Interferometry, MIMO RADAR, SAR, tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
282 Affective (and Effective) Teaching and Learning in Higher Education: Getting Social Again

Authors: Laura Zizka, Gaby Probst

Abstract:

The COVID-19 pandemic has affected the way Higher Education Institutions (HEIs) have given their courses. From emergency remote where all students and faculty were immediately confined to home teaching and learning, the continuing evolving sanitary situation obliged HEIs to adopt other methods of teaching and learning from blended courses that included both synchronous and asynchronous courses and activities to HyFlex models where some students were on campus while others followed the course simultaneously online. Each semester brought new challenges for HEIs and, subsequently, additional emotional reactions. This paper investigates the affective side of teaching and learning in various online modalities and its toll on students and faculty members over the past three semesters. The findings confirm that students and faculty who have more self-efficacy, flexibility, and resilience reported positive emotions and embraced the opportunities that these past semesters have offered. While HEIs have begun a new semester in an attempt to return to ‘normal’ face-to-face courses, this paper posits that there are lessons to be learned from these past three semesters. The opportunities that arose from the challenge of the pandemic should be considered when moving forward by focusing on a greater emphasis on the affective aspect of teaching and learning in HEIs worldwide. 

Keywords: affective teaching and learning, engagement, interaction, motivation, social presence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
281 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project

Authors: S. Behnam Malekzadeh, I. Kerr, T. Kaempffer, T. Harper, A Watson

Abstract:

The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and BPs at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including BP elevations and coordinates. 13 (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ± 55 cm, while the actual results showed that 69% of predicted elevations were within ± 79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ± 99 cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.

Keywords: Case-Based Reasoning, CBR, geological feature, geology, piezometer, pressure sensor, core logging, dam construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84
280 Fabrication and Study of Nickel Phthalocyanine based Surface Type Capacitive Sensors

Authors: Mutabar Shah, Muhammad Hassan Sayyad, Khasan S. Karimov

Abstract:

Thin films of Nickel phthalocynine (NiPc) of different thicknesses (100, 150 and 200 nm) were deposited by thermal evaporator on glass substrates with preliminary deposited aluminum electrodes to form Al/NiPc/Al surface-type capacitive humidity sensors. The capacitance-humidity relationships of the sensors were investigated at humidity levels from 35 to 90% RH. It was observed that the capacitance value increases nonlinearly with increasing humidity level. All measurements were taken at room temperature.

Keywords: Capacitive sensor, Humidity, Nickel phthalocyanine, Organic semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
279 Local Algorithm for Establishing a Virtual Backbone in 3D Ad Hoc Network

Authors: Alaa E. Abdallah, M. Bsoul, Emad E. Abdallah, Ahmad Al-Khasawneh, Muath Alzghool

Abstract:

Due to the limited lifetime of the nodes in ad hoc and sensor networks, energy efficiency needs to be an important design consideration in any routing algorithm. It is known that by employing a virtual backbone in a wireless network, the efficiency of any routing scheme for the network can be improved. One common design for routing protocols in mobile ad hoc networks is to use positioning information; we use the node-s geometric locations to introduce an algorithm that can construct the virtual backbone structure locally in 3D environment. The algorithm construction has a constant time.

Keywords: Virtual backbone, dominating set, UDG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
278 Design of Angular Estimator of Inertial Sensor Using the Least Square Method

Authors: Ji Hoon Kim, Hyung Gi Min, Jae Dong Cho, Jae Hoon Jang, Sung-Ha Kwon, Eun Tae Jeung

Abstract:

Since MEMS gyro sensors measure not angle of rotation but angular rate, an estimator is designed to estimate the angles in many applications. Gyro and accelerometer are used to improve estimating accuracy of the angle. This paper presents a method of finding filter coefficients of the well-known estimator which is to get rotation angles from gyro and accelerometer data. In order to verify the performance of our method, the estimated angle is compared with the encoder output in a rotary pendulum system.

Keywords: gyro, accelerometer, estimator, least square.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
277 Laban Movement Analysis Using Kinect

Authors: Ran Bernstein, Tal Shafir, Rachelle Tsachor, Karen Studd, Assaf Schuster

Abstract:

Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.

Keywords: Laban Movement Analysis, Kinect, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
276 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds are not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: Structural health monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
275 Vehicular Ad Hoc Network

Authors: S. Swapna Kumar

Abstract:

A Vehicular Ad-Hoc Network (VANET) is a mobile Ad-Hoc Network that provides connectivity moving device to fixed equipments. Such type of device is equipped with vehicle provides safety for the passengers. In the recent research areas of traffic management there observed the wide scope of design of new methodology of extension of wireless sensor networks and ad-hoc network principal for development of VANET technology. This paper provides the wide research view of the VANET and MANET concept for the researchers to contribute the better optimization technique for the development of effective and fast atomization technique for the large size of data exchange in this complex networks.

Keywords: Ad-Hoc, MANET, Sensors, Security, VANET

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4408
274 A Novel VLSI Architecture of Hybrid Image Compression Model based on Reversible Blockade Transform

Authors: C. Hemasundara Rao, M. Madhavi Latha

Abstract:

Image compression can improve the performance of the digital systems by reducing time and cost in image storage and transmission without significant reduction of the image quality. Furthermore, the discrete cosine transform has emerged as the new state-of-the art standard for image compression. In this paper, a hybrid image compression technique based on reversible blockade transform coding is proposed. The technique, implemented over regions of interest (ROIs), is based on selection of the coefficients that belong to different transforms, depending on the coefficients is proposed. This method allows: (1) codification of multiple kernals at various degrees of interest, (2) arbitrary shaped spectrum,and (3) flexible adjustment of the compression quality of the image and the background. No standard modification for JPEG2000 decoder was required. The method was applied over different types of images. Results show a better performance for the selected regions, when image coding methods were employed for the whole set of images. We believe that this method is an excellent tool for future image compression research, mainly on images where image coding can be of interest, such as the medical imaging modalities and several multimedia applications. Finally VLSI implementation of proposed method is shown. It is also shown that the kernal of Hartley and Cosine transform gives the better performance than any other model.

Keywords: VLSI, Discrete Cosine Transform, JPEG, Hartleytransform, Radon Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
273 Development of the Gas Safety Management System using an Intelligent Gasmeter with Wireless ZigBee Network

Authors: Gyou-tae Park, Young-gyu Kim, Jeong-rock Kwon, Yongwoo Lee, Hiesik Kim

Abstract:

The gas safety management system using an intelligent gas meter we proposed is to monitor flow and pressure of gas, earthquake, temperature, smoke and leak of methane. Then our system takes safety measures to protect a serious risk by the result of an event, to communicate with a wall-pad including a gateway by zigbee network in buildings and to report the event to user by the safety management program in a server. Also, the inner cutoff valve of an intelligent gas meter is operated if any event occurred or abnormal at each sensor.

Keywords: micom gas-meter, gas safety, zigbee, ubiquitous

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
272 Effect of On-Demand Cueing on Freezing of Gait in Parkinson’s Patients

Authors: Rosemarie Velik

Abstract:

Gait disturbance, particularly freezing of gait (FOG), is a phenomenon that is common in Parkinson’s patients and significantly contributes to a loss of function and independence. Walking performance and number of freezing episodes have been known to respond favorably to sensory cues of different modalities. However, a topic that has so far barely been touched is how to resolve freezing episodes via sensory cues once they have appeared. In this study, we analyze the effect of five different sensory cues on the duration of freezing episodes: (1) vibratory alert, (2) auditory alert, (3) vibratory rhythm, (4) auditory rhythm, (5) visual cue in form of parallel lines projected to the floor. The motivation for this study is to investigate the possibility of the design of a gait assistive device for Parkinson’s patients. Test subjects were 7 Parkinson’s patients regularly suffering from FOG. The patients had to repeatedly walk a pre-defined course and cues were triggered always 2 s after freezing onset. The effect was analyzed via experimental measurements and patient interviews. The measurements showed that all 5 sensory cues led to a decrease of the average duration of freezing: baseline (7.9s), vibratory alert (7.1s), auditory alert (6.7s), auditory rhythm (6.4s), vibratory rhythm (6.3s), and visual cue (5.3s). Nevertheless, interestingly, patients subjectively evaluated the audio alert and vibratory signals to have a significantly better effect for reducing their freezing duration than the visual cue.

Keywords: Auditory cueing, freezing of gait, gait assistance, Parkinson’s disease, vibratory cueing, visual cueing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003
271 Pattern Recognition of Biological Signals

Authors: Paulo S. Caparelli, Eduardo Costa, Alexsandro S. Soares, Hipolito Barbosa

Abstract:

This paper presents an evolutionary method for designing electronic circuits and numerical methods associated with monitoring systems. The instruments described here have been used in studies of weather and climate changes due to global warming, and also in medical patient supervision. Genetic Programming systems have been used both for designing circuits and sensors, and also for determining sensor parameters. The authors advance the thesis that the software side of such a system should be written in computer languages with a strong mathematical and logic background in order to prevent software obsolescence, and achieve program correctness.

Keywords: Pattern recognition, evolutionary computation, biological signal, functional programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
270 Using the Polynomial Approximation Algorithm in the Algorithm 2 for Manipulator's Control in an Unknown Environment

Authors: Pavel K. Lopatin, Artyom S. Yegorov

Abstract:

The Algorithm 2 for a n-link manipulator movement amidst arbitrary unknown static obstacles for a case when a sensor system supplies information about local neighborhoods of different points in the configuration space is presented. The Algorithm 2 guarantees the reaching of a target position in a finite number of steps. The Algorithm 2 is reduced to a finite number of calls of a subroutine for planning a trajectory in the presence of known forbidden states. The polynomial approximation algorithm which is used as the subroutine is presented. The results of the Algorithm2 implementation are given.

Keywords: Manipulator, trajectory planning, unknown obstacles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
269 Animal-Assisted Therapy for Persons with Disabilities Based on Canine Tail Language Interpretation via Gaussian-Trapezoidal Fuzzy Emotional Behavior Model

Authors: W. Phanwanich, O. Kumdee, P. Ritthipravat, Y. Wongsawat

Abstract:

In order to alleviate the mental and physical problems of persons with disabilities, animal-assisted therapy (AAT) is one of the possible modalities that employs the merit of the human-animal interaction. Nevertheless, to achieve the purpose of AAT for persons with severe disabilities (e.g. spinal cord injury, stroke, and amyotrophic lateral sclerosis), real-time animal language interpretation is desirable. Since canine behaviors can be visually notable from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequencies are selected as our features of interests. The novel fuzzy rules based on Gaussian-Trapezoidal model and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into four canine emotional behaviors, i.e., agitate, happy, scare and neutral as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog and has also been evaluated in the real dog with the perfect recognition rate.

Keywords: Animal-assisted therapy (AAT), Persons with disabilities, Canine tail language, Fuzzy emotional behavior model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
268 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: Iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
267 Application of Wireless Visual Sensor for Semi- Autonomous Mine Navigation System

Authors: Vinay Kumar Pilania, Debashish Chakravarty

Abstract:

The present paper represent the efforts undertaken for the development of an semi-automatic robot that may be used for various post-disaster rescue operation planning and their subsequent execution using one-way communication of video and data from the robot to the controller and controller to the robot respectively. Wireless communication has been used for the purpose so that the robot may access the unapproachable places easily without any difficulties. It is expected that the information obtained from the robot would be of definite help to the rescue team for better planning and execution of their operations.

Keywords: Mine environment, mine navigation, mine rescue robot, video data transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
266 A Direct Down-conversion Receiver for Low-power Wireless Sensor Networks

Authors: Gianluca Cornetta, Abdellah Touhafi, David J. Santos, Jose Manuel Vazquez

Abstract:

A direct downconversion receiver implemented in 0.13 μm 1P8M process is presented. The circuit is formed by a single-end LNA, an active balun for conversion into balanced mode, a quadrature double-balanced passive switch mixer and a quadrature voltage-controlled oscillator. The receiver operates in the 2.4 GHz ISM band and complies with IEEE 802.15.4 (ZigBee) specifications. The circuit exhibits a very low noise figure of only 2.27 dB and dissipates only 14.6 mW with a 1.2 V supply voltage and is hence suitable for low-power applications.

Keywords: LNA, Active Balun, Passive Mixer, VCO, IEEE 802.15.4(ZigBee).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
265 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface

Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, Kh. V. Nerkararyan

Abstract:

Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depend on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.

Keywords: Fiber-tip, Liquid-air interface, Nano vibration, Opto-mechanical sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508