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Abstract—Due to the limited lifetime of the nodes in ad hoc and
sensor networks, energy efficiency needs to be an important design
consideration in any routing algorithm. It is known that by employing
a virtual backbone in a wireless network, the efficiency of any routing
scheme for the network can be improved. One common design for
routing protocols in mobile ad hoc networks is to use positioning
information; we use the node’s geometric locations to introduce an
algorithm that can construct the virtual backbone structure locally in
3D environment. The algorithm construction has a constant time.
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I. INTRODUCTION

THE recent advances in technologies have enabled a new
kind of networks, so called wireless ad hoc networks,

which do not require any pre-existing infrastructure for es-
tablishing connectivity and routing messages. Two nodes can
communicate in a bidirectional manner if and only if the
distance between them is at most the minimum of their
transmission ranges. If one node wishes to communicate with
another node outside its transmission range, the set of nodes
between the two endpoints should forward their packets so
they can communicate. This means that in ad hoc network, any
node must be able to play the role of a router in a conventional
network.

A crucial problem in multihop routing is to find an efficient
and correct route between a source and a destination; however
for many networks, a more important problem is to provide an
energy efficient routing protocol because of the limited battery
life of the wireless nodes. One way to decrease the power con-
sumption (communication overhead) of the routing protocols
is to narrow down the search space for a route to the node in
the virtual backbone. A connected dominating set (CDS) [4],
[9], [17], [18] can form an interesting virtual backbone. A
connected dominating set of a graph is a connected subset of
nodes such that each node in the graph is either in the subset
or adjacent to at least one node in that subset.

The routing algorithms that use virtual backbone only
allow nodes of the connected dominating set (dominators)
act as routers; all other nodes communicate via a neighbor
in the dominating set. Clearly, the efficiency of this approach
depends largely on the process of finding the dominating sets
and the size of the corresponding virtual backbone.
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Due to the nature of ad hoc network, Algorithms to con-
struct a virtual backbone should be local, where each node
of the network only uses information obtained uniquely from
the nodes located no more than a constant (independent of the
size of the network) number of hops from it. In this paper we
propose a local algorithm to construct a virtual backbone for
3d wireless ad hoc network. The new algorithm has a constant
time complexity.

The rest of the paper is organized as follows: In Section
II, we briefly present the network model and some related
work. A Space Partition System of the 3D space needed in
our algorithms is described in Section III. In Section IV, we
introduce our local algorithm to construct a virtual backbone.
We conclude our paper in Section V.

II. PRELIMINARIES

A. The Network Model

We assume that the set of n wireless nodes is represented
as a point set S in 3D space; each mobile host knows the
coordinates of its position. All network nodes have the same
communication range r. Two nodes are connected by an edge
if the Euclidean distance between them is at most r. The
resulting graph is called a unit disk graph (UDG)[5], [15]. A
dominating set for a graph is a set of vertices whose neighbors,
along with themselves, constitute all the vertices in the graph.

B. Related Work

The general problem of finding the smallest virtual back-
bone (smallest connected dominating set) for a graph is known
to be NP-Hard [7], [11], [12], [14]. Several algorithms for
finding an approximation for a small size virtual backbone
have been proposed. The Greedy algorithm [6], [13], [16]
for constructing a virtual backbone is a global algorithm
where the run time depends on the number of nodes. The
greedy algorithm grows a tree rooted at the node that has the
maximum number of neighbors. The root is colored black and
all its neighbors are colored gray. Then, the algorithm scans the
gray nodes and their white neighbors iteratively, and selects
the gray node or the pair of gray and white node with the
maximum number of white neighbors. The selected node(s)
are marked black and their neighbors are marked gray. The
algorithm terminates when all the nodes have been marked
either black or gray.

Alzoubi et al. [3], [4] proposed a distributed algorithm
to construct virtual backbone; in this algorithm if the node
unique ID is minimum among its neighbors, it adds itself to
the dominating set and removes all its neighbors from the
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Fig. 1. Unit diameter cube. top face is orange, right side face is light green

consideration of the set members. This process is repeated
at each node, such that the resulting set is a non-connected
dominating set. The nodes in the resulting set use local
topology information for a node, up to 3 hops away, to add
gateway nodes to the set until the set becomes a connected
dominating set. The main disadvantage of this algorithm is
the construction time of the independent set which can be
proportional to the number of nodes, thus it is a non-local
algorithm. It has been proved in [1] that this algorithm is not
a local algorithm.

None of the algorithms mentioned above has both constant
approximation bound and constant worst case time bound. One
approach to achieve these bounds is to use the underlying
geographic information. The first algorithm to determine a
virtual backbone in 2D within a constant approximation of
the optimal dominating set in a constant time was proposed
by Czyzowicz et al. [8]. A 3D version of the algorithm has
been proposed in [1].

III. SPACE PARTITION SYSTEM

Our space partition system uses identically shaped tiles that
fill the entire space. Each tile used in our tiling system consists
of 27 cube of diameter equal to 1 unit, see Fig. 1. Each cube
in the tile represents one class which has a unique integer.
Assume that the first cube is centered at the coordinates
(x1, y1, z1), i.e. the z-axis passes through the center of face
1 (top face), the x-axis passes through the center of face 2
(right side face) and y-axis passes through the center of face
3 (front side face). We will call this orientation as the centering
orientation; the coordinates of the centers of the classes from 2
to 27 are shown in table I. They all have the same orientation
as class 1. See Fig. 2 for an example of the tile used, showing
the placement of the cubes in the tile with the associated
classes labels.

Let the tiling starts by placing the center of one tile, TLCN

, at the coordinate (x1, y1, z1), with orientation equal to the
centering orientation. To cover all the faces of TLCN we
need 26 other adjacent tiles that are in contact with TLCN

in the positions summarized on Table II. Each tile has the
same orientation as TLCN . Fig. 3 shows the space tiling
process used in our algorithm. It is clear that any point can

Fig. 2. The tile used in the space partition system divided into 27 cube of
diameter 1 and the class numbering associated with the cube (a) shows the
cubes class number. (b) shows the whole tile.

calculate locally its class number by determining to which tile
and corresponding cube it belongs. If a node located exactly
on the shared face between two cubes C1 and C2, the node is
considered of class 1 (the class with the smaller ID).

IV. A LOCAL ALGORITHM FOR 3D VIRTUAL BACKBONE

(3DVBP)

Our local algorithm to construct a virtual backbone consists
of two phases. In the first phase, a dominating set 3DDOM is
constructed using Algorithm 1. In the second phase, each node
from 3DDOM creates paths connecting dominators that are at
most three hops apart. Using the space partition described in
the previous section, each node can determine its class number
locally using a constant number of arithmetic operations. The
nodes are aware of the locations of all their neighbors, using
the periodic hello messages, so they can also calculate the class
number of each neighbor. It is clear that the nodes that are in
same cube are neighbors because the diameter of the cube is
1 Our local construction of the dominating sets is based on a
similar algorithm proposed by Czyzowicz et al. [8] for 2D. To
calculate a dominating set of a unit disk graph G, each node
of G executes Algorithm 1.
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TABLE I
COORDINATES OF THE 27 CUBES THAT FORMS THE CENTER TILE, FIRST CUBE IS CENTERED AT (x1, y1, z1).

C 1 (x1, y1, z1) C 2 (x1 + 1/
√

3, y1, z1)

C 3 (x1 − 1/
√

3, y1, z1) C 4 (x1, y1 − 1/
√

3, z1)

C 5 (x1, y1, z1 + 1/
√

3) C 6 (x1, y1 + 1/
√

3, z1)

C 7 (x1, y1 − 1/
√

3, z1) C 8 (x1 + 1/
√

3, y1, z1 + 1/
√

3)

C 9 (x1 − 1/
√

3, y1, z1 + 1/
√

3) C 10 (x1 − 1/
√

3, y1, z1 − 1/
√

3)

C 11 (x1 + 1/
√

3, y1, z1 − 1/
√

3) C 12 (x1 + 1/
√

3, y1 − 1/
√

3, z1)

C 13 (x1 − 1/
√

3, y1 − 1/
√

3, z1) C 14 (x1, y1 − 1/
√

3, z1 − 1/
√

3)

C 15 (x1, y1 − 1/
√

3, z1 + 1/
√

3) C 16 (x1, y1 + 1/
√

3, z1 − 1/
√

3)

C 17 (x1, y1 + 1/
√

3, z1 + 1/
√

3) C 18 (x1 + 1/
√

3, y1 + 1/
√

3, z1)

C 19 (x1 − 1/
√

3, y1 + 1/
√

3, z1) C 20 (x1 + 1/
√

3, y1 + 1/
√

3, z1 + 1/
√

3)

C 21 (x1 − 1/
√

3, y1 + 1/
√

3, z1 + 1/
√

3) C 22 (x1 + 1/
√

3, y1 + 1/
√

3, z1 − 1/
√

3)

C 23 (x1 − 1/
√

3, y1 + 1/
√

3, z1 − 1/
√

3) C 24 (x1 + 1/
√

3, y1 − 1/
√

3, z1 + 1/
√

3)

C 25 (x1 + 1/
√

3, y1 − 1/
√

3, z1 − 1/
√

3) C 26 (x1 − 1/
√

3, y1 − 1/
√

3, z1 − 1/
√

3)

C 27 (x1 − 1/
√

3, y1 − 1/
√

3, z1 + 1/
√

3)

TABLE II
COORDINATES OF THE CENTERS OF THE 26 NEIGHBORS.

center tile 1 (x1, y1, z1) neighbor 1 (x1 + 3/
√

3, y1, z1)

neighbor 2 (x1 − 3/
√

3, y1, z1) neighbor 3 (x1, y1 − 3/
√

3, z1)

neighbor 4 (x1, y1, z1 + 3/
√

3) neighbor 5 (x1, y1 + 3/
√

3, z1)

neighbor 6 (x1, y1 − 3/
√

3, z1) neighbor 7 (x1 + 3/
√

3, y1, z1 + 3/
√

3)

neighbor 8 (x1 − 3/
√

3, y1, z1 + 3/
√

3) neighbor 9 (x1 − 3/
√

3, y1, z1 − 3/
√

3)

neighbor 10 (x1 + 3/
√

3, y1, z1 − 3/
√

3) neighbor 11 (x1 + 3/
√

3, y1 − 3/
√

3, z1)

neighbor 12 (x1 − 3/
√

3, y1 − 3/
√

3, z1) neighbor 13 (x1, y1 − 3/
√

3, z1 − 3/
√

3)

neighbor 14 (x1, y1 − 3/
√

3, z1 + 3/
√

3) neighbor 15 (x1, y1 + 3/
√

3, z1 − 3/
√

3)

neighbor 16 (x1, y1 + 3/
√

3, z1 + 3/
√

3) neighbor 17 (x1 + 3/
√

3, y1 + 3/
√

3, z1)

neighbor 18 (x1 − 3/
√

3, y1 + 3/
√

3, z1) neighbor 19 (x1 + 3/
√

3, y1 + 3/
√

3, z1 + 3/
√

3)

neighbor 20 (x1 − 3/
√

3, y1 + 3/
√

3, z1 + 3/
√

3) neighbor 21 (x1 + 3/
√

3, y1 + 3/
√

3, z1 − 3/
√

3)

neighbor 22 (x1 − 3/
√

3, y1 + 3/
√

3, z1 − 3/
√

3) neighbor 23 (x1 + 3/
√

3, y1 − 3/
√

3, z1 + 3/
√

3)

neighbor 24 (x1 + 3/
√

3, y1 − 3/
√

3, z1 − 3/
√

3) neighbor 25 (x1 − 3/
√

3, y1 − 3/
√

3, z1 − 3/
√

3)

neighbor 26 (x1 − 3/
√

3, y1 − 3/
√

3, z1 + 3/
√

3)
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Fig. 3. Tilling system used.

In the following we will discuss some properties of Algo-
rithm 1. To begin with, we show that Algorithm1 is local
algorithm by showing that it will terminate in a constant
number of steps. Let 3DDOM be the set of dominator nodes
that results from applying Algorithm1 on each node in from
UDG.

A. Algorithm 1 is a local algorithm

Proof: If the selection of a dominator in a cube depends
only on the nodes that are at most constant hops away from
the nodes in the given cube, then the algorithm is local. The
selection of a dominator of a node in a cube of class 1 is
done by checking only the nodes inside that cube, which is
not more than 1 hop away. If the node of class i <> 1, here the
algorithm waits the results that comes from neighbors nodes
of lower classes, so eventually it will reaches nodes of class
1 after at most i− 1 steps.

Algorithm 1: A LOCAL ALGORITHM FOR 3D DOM-
INATING SETS

// Algorithm is executed independently by each node.
Execution starts either when a node X needs to find its
dominator, or if it receives a request to find a dominator
in its cube.

begin
X determines its class number using its coordinates1

and the tiling information.
X finds all its neighbors and obtains their2

coordinates and class numbers.
Let CX be the cube that contains X3

if X of class number 1 then4

The node N closest to the center of CX is5

designated as a dominator.

else6

X finds the set S1(X) that contains all nodes in7

CX that has no neighbor of lower class.
if S1(X) is not empty then8

One of nodes in S1(X) closest to the center9

of CX is designated as a dominator.

else10

X requests from every neighbor of lower11

class number to run the algorithm if not
already running.
When all nodes in CX finish their12

calculations, node M from CX that is not
dominated and closest to the center of CX
becomes a dominator.

X informs all its neighbors that a dominator selection13

in its cube is completed and gives them the results.
end

B. Every vertex of UDG is either in 3DDOM or adjacent to
a vertex in 3DDOM. Thus, set 3DDOM is a dominating set of
the UDG

Proof: For a node v in UDG that is not in 3DDOM. If
v is of class 1, then one of the nodes in the cube containing
v is designated as a dominator in line 5. Else if v is of class
i > 1 and at least one node of its cube is not dominated by a
node of an adjacent lower class, one of the nodes in the cube
is designated as a dominator in line 12. Since the diameter of
the cube is 1, node v is dominated by the designated node.

C. The hop distance between a node u ∈ 3DDOM and it
closest node v ∈ 3DDOM is at most 3

Proof: Assume the shortest path between a node u ∈
3DDOM and it closest node v ∈ 3DDOM has at least
4 hops, i. e. u, x1, x2, x3, v. But x1 and x3 are not in
3DDOM because they are neighbors to other in 3DDOM. If
x2 ∈ 3DDOM , it makes the hop distance between u and
x2 equal to 2, a contradiction. If x2 is a neighbor to a node
w ∈ 3DDOM , it makes the hop distance between u and w
equal to 3, a contradiction.
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There are many algorithms proposed to connect a set of
dominators [2], [3], [4], [10], most of them depend on using
three hops node information. Our algorithm for finding the
connectors can be described as follows: each node X from
3DDOM independently runs Algorithm 2.

Algorithm 2: A LOCAL ALGORITHM FOR 3D VIR-
TUAL BACKBONE
// Let 3DDOM be the set of dominating set calculated
by applying Algorithm 1.
// Each node X from 3DDOM run the rest of the
algorithm.
// Let H1(X) is the set of one hop neighbor of X ,
H2(X) is the set of the two hops neighbors of X , and
H3(X) is the set of the three hops neighbors of X

begin
for every node Y in H2(X) do1

if Y in 3DDOM and class number of Y is less2

than the class number of X then
Node X chooses from H1(X) a node U with3

the highest degree that creates a path
(X,U, Y )

for every node Y in H3(X) do
if Y in 3DDOM and class number of Y is less4

than the class number of X then
Node X chooses two nodes U from H1(X)5

and V from H2(X) that creates the path
(X,U, V, Y ). Where U and V have the
highest degree.

The union of the selected nodes along with the nodes6

from 3DDOM describes the virtual backbone for
UDG.

end

V. CONCLUSION

In this paper, we proposed a fully local algorithms that
construct a virtual backbone of UDG in 3D environment in a
constat time. The algorithm does not rely on the spanning tree
construction, which makes it practical for situations, where
the topology changes are frequent and unpredictable. We
showed the importance of the constructed dominating set on
the construction of the virtual backbone, but the approximation
ratio of the virtual backbone is still not clear, we leave this
for future work.
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