Search results for: gyro
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

Search results for: gyro

9 Design of Angular Estimator of Inertial Sensor Using the Least Square Method

Authors: Ji Hoon Kim, Hyung Gi Min, Jae Dong Cho, Jae Hoon Jang, Sung-Ha Kwon, Eun Tae Jeung

Abstract:

Since MEMS gyro sensors measure not angle of rotation but angular rate, an estimator is designed to estimate the angles in many applications. Gyro and accelerometer are used to improve estimating accuracy of the angle. This paper presents a method of finding filter coefficients of the well-known estimator which is to get rotation angles from gyro and accelerometer data. In order to verify the performance of our method, the estimated angle is compared with the encoder output in a rotary pendulum system.

Keywords: gyro, accelerometer, estimator, least square.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
8 Eigenwave Analysis and Simulation of Disc Loaded Interaction Structure for Wideband Gyro-TWT Amplifier

Authors: R. K. Singh, P. K. Jain

Abstract:

In the present paper, disc loaded interaction structure for potential application in wideband Gyro-TWT amplifier has been analyzed, taking all the space and modal harmonics into consideration, for the eigenwave solutions. The analysis has been restricted to azimuthally symmetric TE0,n mode. Dispersion characteristics have been plotted by varying the structure parameters and have been validated against HFSS simulation results. The variation of eigenvalue with respect to different structure parameters has also been presented. It has been observed that disc periodicity plays very important role for wideband operation of disc-loaded Gyro-TWT.

Keywords: Broadbanding, Disc-loaded interaction structure, Eigenvalue, Gyro-TWT, HFSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
7 Development of a Three-Dimensional-Flywheel Robotic System

Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu

Abstract:

In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.

Keywords: Gyro, gimbal, Lagrange equation, spherical robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
6 Research of Ring MEMS Rate Integrating Gyroscopes

Authors: Hui Liu, Haiyang Quan

Abstract:

This paper To get the angle value with a MEMS rate gyroscope in some specific field, the usual method is to make an integral operation to the rate output, which will lead the error cumulating effect. So the rate gyro is not suitable. MEMS rate integrating gyroscope (MRIG) will solve this problem. A DSP system has been developed to implement the control arithmetic. The system can measure the angle of rotation directly by the control loops that make the sensor work in whole-angle mode. Modeling the system with MATLAB, desirable results of angle outputs are got, which prove the feasibility of the control arithmetic.

Keywords: Rate gyroscope, Rate integrating gyroscope, Whole angle mode, MATLAB modeling, DSP control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255
5 Energy-Efficient Sensing Concept for a Micromachined Yaw Rate Sensor

Authors: D. Oshinubi, M. Rocznik, K. Dostert

Abstract:

The need for micromechanical inertial sensors is increasing in future electronic stability control (ESC) and other positioning, navigation and guidance systems. Due to the rising density of sensors in automotive and consumer devices the goal is not only to get high performance, robustness and smaller package sizes, but also to optimize the energy management of the overall sensor system. This paper presents an evaluation concept for a surface micromachined yaw rate sensor. Within this evaluation concept an energy-efficient operation of the drive mode of the yaw rate sensor is enabled. The presented system concept can be realized within a power management subsystem.

Keywords: inertial sensors, micromachined gyros, gyro sensing concepts, power management, FPGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
4 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems

Authors: Barış Can Yalçın

Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Keywords: Calibration of sensors, data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4335
3 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation

Authors: O. Maklouf, Ahmed Abdulla

Abstract:

A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers have looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.

Keywords: GPS, ParIMU, INS, Kalman Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
2 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3055
1 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077