
Pattern Recognition of Biological Signals
Paulo S. Caparelli, Eduardo Costa, Alexsandro S. Soares and Hipólito Barbosa

Abstract—This paper presents an evolutionary method for de-
signing electronic circuits and numerical methods associated with
monitoring systems. The instruments described here have been used
in studies of weather and climate changes due to global warming, and
also in medical patient supervision. Genetic Programming systems
have been used both for designing circuits and sensors, and also for
determining sensor parameters. The authors advance the thesis that
the software side of such a system should be written in computer
languages with a strong mathematical and logic background in order
to prevent software obsolescence, and achieve program correctness.

Keywords—Pattern recognition, evolutionary computation, biolog-
ical signal, functional programming.

I. INTRODUCTION

The modern industrial society has been made possible by the
ingenuity of Honoré Blanc. Before him, complex mechanisms
like muskets were made one by one. Each part was manufac-
tured, adjusted and filed to fit the object that the craftsman
was assembling at that moment. If a musket needed repair, it
was sent to a gunsmith who would take measurements, and
manufacture a replacement for the defective component. In
1790, Honoré Blank called together a group of high ranking
officials, in front of whom he assembled muskets from parts
drawn from bins. Thomas Jefferson by now had visited Blanc’s
workshop and learned about his method.

Eighteen years after Blanc’s demonstration, when Jeffer-
son was president of the United States, military authorities
realizing the need to defend their country began to rearm.
Around 1798, Treasury Secretary Wolcott sent a certain Eli
Whitney one of Honoré Blanc’s reports. To promote the new
idea, Whitney faked a duplication of Blanc’s demonstration.
He hand-crafted each part so that the components would
fit together. The swindle worked fine, and the American
government promised to buy from ten to fifteen thousand mus-
kets. However, the parts weren’t interchangeable at all, so he
took eight years to deliver the guns. Nevertheless, Whitney’s
enthusiasm in promoting Blanc’s ideas made interchangeable
parts a DE FACTO manufacturing standard in modern industry.

With the advent of computers, industry needed two sub-
systems — hardware and software. In principle, software
could be designed to fit any hardware. The problem was that
technological limitations, like speed and memory, imposed
serious restrictions on the computer industry. When limitations
are lifted by advances in hardware design, programmers face
a dilemma:

P.S. Caparelli and E. Costa are with Department of Electrical Engineering,
Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
e-mail: pscaparelli@ufu.br, costa@ufu.br

A.S.Soares is with Department of Computer Science, Federal University of
Goiás (UFG), Catalão, Goiás, Brazil e-mail: alex@catalao.ufg.br

H.Barbosa is with Federal Institute of Education, Science and Technology
of Goiás (IFG), Goiânia, Goiás, Brazil e-mail: hipolito@cefet.br

• They can keep their languages, methods and libraries, so
old software can run in the new hardware. However, it
will lack the functionality that improved technology made
available.

• They can write more powerful software with added
features and safety tools. This is what is usually done.

The conclusion of the above discussion is that software be-
comes obsolete, and needs constant replacement. The trouble
is that there isn’t enough manpower to continually rewrite
applications.

This paper is about software obsolescence and how to
remedy it so that Honoré Blank’s great contribution to industry
can be applied to software development. Of course, no one
can expect to give a short term solution to this problem, since
any solution involves extirpation of deeply rooted habits and
cherished methods. In fact, Honoré Blanc himself was not
very successful in changing the manufacturing processes of
his time. According to Lienhard[1], since Blanc used unskilled
labor, he had made factories independent of government
control over crafts. Therefore, the authorities in charge closed
down Mr. Blanc’s business.

Computer languages become obsolete because they suffer
restriction imposed by the underline hardware. For instance,
technology may impose memory limitations that prevent im-
plementation of dynamic memory. Therefore, a computer
language may need to reuse variables. This is the main reason
for destructive updates being so widespread in mainstream
computer languages. Speed or security reasons may prevent
implementation of global or tail call optimization. In few
words, state of the art technology makes language designers
deviate from mathematical systems, and invent formal methods
that are easier to implement and deploy. When technologi-
cal advances render the modifications unnecessary, computer
languages are scrapped or updated, and one cannot compile
vintage software anymore.

II. FUNCTIONAL PROGRAMMING

Technologically conditioned languages (TCL) are those
whose syntax and semantics are dictated by the stage of
computer technology, or by the knowledge people have of
computers. The memory model, the lack of garbage collection,
the poor representation of abstract data types, the execution
strategy and numerical orientation were forced on language
designers by the limited hardware they had. If John Backus
tried to endow FORTRAN (the first high level language) with
better data processing tools, it would have been too slow
for the intended applications, and would not have fitted in
the computers manufactured in 1950. It is interesting to note
that Backus[6] made it clear that he did not want FORTRAN
to be what it was. His design was entirely dictated by his

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:3, 2009

736International Scholarly and Scientific Research & Innovation 3(3) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

3,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

59
62

.p
df

hardware and his knowledge of language implementation.
What he really wanted was a functional language based on
Combinatory Logic, a branch of mathematics created by the
Ukrainian Mathematician Schonfinkel[7]. Here is what Backus
wrote about FORTRAN and similar languages in a speech
delivered when he received the prestigious Turing Award:

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent de-
fects at the most basic level cause them to be both
fat and weak: their primitive word-at-a-time style of
programming. . . , their close coupling of semantics to
state transitions, their division of programming into
a world of expressions and a world of statements,
their inability to effectively use powerful combining
forms for building new programs from existing ones,
and their lack of useful mathematical properties for
reasoning about programs.

As one can see from Backus’s speech, he did not like techno-
logically conditioned languages, not even the one he invented.

There are computer languages whose features are dictated
not by the technology itself, but by the way people perceive it.
Most of these human oriented languages are derived from the
λ-Calculus (see [8]), while others come from developments in
Symbolic Logic. From now on, we will refer to this family of
language as Logic Languages.

III. HASKELL

In order to protect themselves against obsolescence and
in order to use the rich inheritance of Mathematics and
Logic, the authors of this paper decided to use a functional
language based on λ-Calculus. There are two options: Clean
and Haskell. Although Clean is safer and more elegant than
Haskell, and more faithful to λ-calculus, this paper will
present its results in Haskell, since it is more widely known
than Clean. In fact, Haskell is used as a teaching tool in
many important colleges and universities. However, the reader
should consider switching to Clean if he has a stake in safety
and performance.

Since Haskell is a branch of Mathematics, it can be easily
learned by those who have a working knowledge of functional
analysis, set theory, and algebra. In the rest of this section,
the interested reader will find a short introduction to func-
tional programming. The method of programming numerical
algorithms used here are largely borrowed from Hughes[2].

Let us write a small program to calculate the prime factors
of a natural number. As a computable function, factors is
defined thus:

1 import System
2
3 -- Least divisor starting from k
4 ldf k n | rem n k==0 = k
5 | k̂ 2 > n = n
6 | otherwise= ldf (k+1) n
7
8 factors 1 = []
9 factors n = p : factors (n ÷ p) where

10 p= ldf 2 n
11

12 main = do
13 args ∈ getArgs
14 case args of
15 [n] → print $ factors (read n)
16 otherwise → putStrLn "e.g. usus: factors 57"

Function getArgs returns the command line arguments as a
list of Strings. The first argument of this list is converted to
a numerical value by the read function. Here is how to use
the above program:

C:\fp>ghc -O2 fibo.hs --make
[1 of 1] Compiling Main
Linking fibo.exe ...

C:\fp>factors.exe 5754
[2,3,7,137]

In order to get a better understanding of how the program
works, let us remove the factors function.

1 -- File: args.hs
2 import System(getArgs)
3
4 main = do
5 a ∈ getArgs
6 print a

Here is how to compile and execute args.hs:
C:\fp>ghc args.hs --make
[1 of 1] Compiling Main
Linking args.exe ...

C:\fp>args 4 5 6 7
["4","5","6","7"]

As can be seen in the above example, getArgs returns the
command line arguments as a list of strings. In the main
function, the variable args matches the list [n], and assigns
the string "5754" to n. Finally, (read n) converts the
string into an integer number.

The definition of ldf (least divisor) is somewhat ob-
vious. Vertical bars introduce conditions; for instance
ldf k n |rem n k==0 =k means: When the remainder
rem n k equals 0, k is a divisor of n. Since k starts from
the smallest prime, and it is incremented at each interaction,
it is the lowest divisor.

Function factors n is defined as a set of rewriting
equations. Each equation has a left hand side, and a right
hand side. If an expression matches the left hand side, it is
rewritten as the right hand side. For instance, the expression
factors 1 matches the first equation, and is rewritten as
[] (the empty list, since 1 does not have factors greater than
1). The expression factors 8 matches the second equation;
the right hand side builds a list whose first element is p (the
least divisor of 8), and the tail contains the factors of n divided
by 2; since n is 8, the tail contains the factors of 4.

Lists are ordered sequences of elements. In general, a list
is represented by its elements between square brackets. In
Haskell, the list constructor is a colon; e.g. the expression
(3:[2,4]) builds a list [3,2,4], whose first element is 3,
and whose tail is [2,4]. The two components of a list (head
and tail) are taken apart by pattern matches; for instance, if the

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:3, 2009

737International Scholarly and Scientific Research & Innovation 3(3) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

3,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

59
62

.p
df

pattern (x:xs) matches [1,2,3], the list head is assigned
to x(x=1), and the tail is assigned to xs (xs=[2,3]).

Mathematicians have a notation to represent sets that both
Clean and Haskell have borrowed; it is called Zermelo Frankel
notation after the two logicians who made important contri-
butions to set theory.

Both in Mathematics, and in Haskell,
[(i, iˆ2) |i ∈[1..n]] represents a list of pairs
(i, iˆ2), where i ∈ [1..n], and iˆ2 is the square of
i. N. B. Most Haskell programmers prefer ← to ∈.

The reader will notice that Haskell uses a ‘do’ keyword in
order to introduce a sequence of commands. However, this
is nothing else than an alternative to the Zermelo-Frankel
notation.

Haskell has both an interpreter, useful for testing ideas, and
a compiler, when speed and efficiency are at stake. If one
looks at the following interpreter session, one will see that the
do-notation is equivalent to the Zermelo-Frankel notation.

1 Prelude> [(x, x*x) | x ∈ [2..6]]
2 [(2,4),(3,9),(4,16),(5,25),(6,36)]
3 Prelude> do x ∈ [2..6]; return (x, x*x)
4 [(2,4),(3,9),(4,16),(5,25),(6,36)]

Around 1932, the American logician Alonzo Church[3]
introduced the notions of computable functions and untyped
λ-calculus into the world of Mathematics. Untyped λ-calculus
is inconsistent, but Church published two other papers in 1936
(see [4] and [5]), where a modification of his original theory
proved to be consistent. Around 1990, Mathematicians like
Barendregt, Hughes, Plasmeijer and Peyton-Jones relied on
λ-calculus in an effort to create a computer language that
could solve two of the greatest problems of Computer Science:
software obsolescence and referencial opacity.

Referencial opacity has to do with functions that have side
effects. In a program written in C, for instance, it is not enough
to look at the text of the program in order to understand what
it does, or to find a bug. Since the computational process can
change the values of variables, one has to trace the history of
computation to localize the malfunction. On the other hand,
Mathematicians don’t need to examine the process used by
Archimedes to find a proof of his theorems in order to perceive
that they are correct. Mathematics is referentially clear, while
C is referentially opaque.

Opaque languages hide bugs and make programs obscure,
and this brings difficulties in proving implementation cor-
rectness. In fact, algorithms are specified in a mathematical
language that is clear, but implemented in opaque languages
that are obscure. Mathematical tools can be used to prove that
the specification is correct, but it is almost impossible to use
them to prove that the implementation is also correct.

Before passing to the use of genetic programming in trouble
shooting, the main technical contribution of the present paper,
let us examine a simple numerical problem in order to get a
firmer hold on the functional programming concepts.

IV. PARALLEL PROGRAMMING

Since functional languages are based on Mathematics, they
have the ability to effectively use powerful combining forms

for building new programs from existing ones (Backus[6]).
This ability allows them to keep pace with both hardware and
software technology. For instance, modern machines are mul-
tiprocessing; people who program in traditional languages are
rarely able to use this new technology in building applications
that explore hardware parallelism. Below, we will show an
example of how easily a Haskell program can be parallelized
in a multi-core PC.

Cryptography is one of the most important technologies of
our computer based society. It is used not only to protect
privacy and industrial or military secrets, but also assets,
since commerce and financial transactions are increasingly
dependent on the Internet.

One of the most useful methods of cryptography is public
key ciphers; this method is based on large prime numbers. A
prime number is divisible only by itself. Checking whether
a number is prime is a difficult problem. Therefore, one
often approaches it using parallel computation. A simple (and
inefficient) test for primality consists in verifying whether the
number equals to its least divisor. The program below applies
this method in parallel to find a list of prime numbers.

1 import Data.Maybe
2 import Control.Parallel.Strategies
3 import Control.Parallel
4 import System
5
6 ld n= ldf 2 where
7 ldf k | rem n k == 0 = k
8 | k̂ 2 > n = n
9 | otherwise= ldf (k+1)

10
11 prime n | n==1 = False
12 | otherwise= ld n==n
13
14 prim n= if (prime n) then n else 0
15
16 bigNums = [25431045773439..]
17 primlist n = (parMap rwhnf) prim (take n bigNums)
18
19 main= do
20 args ∈ getArgs
21 case args of
22 [n] → prt (primlist (read n))
23 otherwise → putStrLn "e.g. usus: pprims 5"
24
25 prt [] = return ()
26 prt (x:xs) | x==0 = prt xs
27 prt (x:xs)= do print x
28 prt xs

Here is the command line used to compile and run the above
program:

D:\par>ghc -O2 -threaded pprims.hs --make
[1 of 1] Compiling Main
Linking pprims.exe ...

D:\par>pprims.exe 400 +RTS -N2
25431045773453
25431045773461
25431045773477
25431045773503
25431045773813

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:3, 2009

738International Scholarly and Scientific Research & Innovation 3(3) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

3,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

59
62

.p
df

In line 16, the program assigns an infinite list of integer num-
bers to bigNums. The list starts with 25431045773439.
In line 17, (take n bigNums) takes n numbers from
bigNums; this is always possible because bigNums has an
infinite number of elements; as one can see, Haskell allows
the use of mathematical concepts like infinite sequences to
reason about programs. As for the form (parMap rwhnf),
it applies prim to each element of (take n bigNums),
producing a list whose elements are either a prime number or
0.

Function parMap is an example of what Backus calls
powerful combining forms. It applies a function to every
element of a list. The argument rwhnf is a parallel execution
strategy; the interested reader should consult Peyton-Jones[9].
Figure 1 shows how parMap distributes processing between
the two cores of a desktop computer. The machine used in
the experiment is an old model, in order to show that one can
explore parallelism even in dated hardware.

For the sake of completeness, one can find a listing of public
cryptography below. One interesting feature of Haskell and
Clean is the possibility of automatically deriving methods for
many classes of programs. For instance, public cryptography
has two keys, one for encoding, and another for decoding. The
encoding key is made public, and anyone who wants to send
coded information to the receiver can use it. The receiver is the
only entity that has the decoding private key. Therefore, only
the receiver can access the message. Line 2 allows Haskell
to read and show both the public and private keys that are
represented by a data structure. A similar job in conventional
language requires compiler writing technology and complex
parsers. Here is an interpreted session of the cryptography
program:

Prelude> :l "crypto.hs"

*Main> let (pr,pub)= genRSAKey prim1 prim2

*Main> pr
PRIV 646738089133343592386779931
248745418897420280882781905

*Main> pub
PUB 646738089133343592386779931
129347617826658546059046593

*Main> let code= ersa pub 12345678987654

*Main> code
95741030030096934463520585

*Main> drsa pr code
12345678987654

1 data RSAKey = PUB Integer Integer |
PRIV Integer Integer

2 deriving (Show, Read)
3
4 mInverse d f= loop (1, 0, f) (0, 1, d) where
5 loop (x1, x2, x3) (y1, y2, 0)= (0, y1)
6 loop (x1, x2, x3) (y1, y2, 1) |

y2<0= (1, f+y2)
7 loop (x1, x2, x3) (y1, y2, 1)= (1, y2)
8 loop (x1, x2, x3) (y1, y2, y3)=
9 loop (y1, y2, y3) (x1-q*y1, x2-q*y2, x3-q*y3)

10 where q= x3 ÷ y3
11
12 expm m b k = ex b k 1 where
13 ex a k s
14 | k == 0 = s
15 | mod k 2 == 0 = ((ex (mod (a*a) m)) (k ÷

2)) s
16 | otherwise = ((ex (mod (a*a) m)) (k ÷

2)) ((s*a) ‘mod‘ m)
17
18 invm :: Integer → Integer → Integer
19 invm m a
20 | g /= 1 = error "No inverse exists"
21 | otherwise = x ‘mod‘ m
22 where (g,x) = mInverse a m
23
24 genRSAKey p q = (PRIV n d,PUB n e) where
25 phi = (p-1)*(q-1)
26 n = p*q
27 e = find (phi ÷ 5)
28 d = invm phi e
29 find x
30 | g == 1 = x
31 | otherwise = find ((x+1) ‘mod‘ phi)
32 where (g,_) = mInverse x phi
33
34 ersa (PUB n e) x = expm n x e
35 drsa (PRIV n d) x = expm n x d
36
37 prim1= 25431045773477
38 prim2= 25431045773503

This section is about Haskell, not cryptography. However, the
authors have chosen cryptography to show Haskell in action,
as it is an interesting problem with a strong mathematical
biasing that is apt at revealing the best features of functional
programming.

As already mentioned, there are two keys, a public and a
private one. Let e be the public key, d the private key, and n the
product of p and q (two large prime numbers). The public and
the private keys must obey the following relationship: d×e =
1 mod φ(pq), i.e., d × e = 1 + k × φ(n). In this case, the
cipher text c is given by c = me mod n.

Decryption of a message is possible because cd =
med mod n. Since d× e = 1 + k × φ(n), one has:

med = m1+kφ(n) = m(mφ(n))k = m mod n = m, if m < n

V. PROOF OF CORRECTION

Since Haskell has a strong mathematical foundation, it is
possible to use mathematical principles to prove that a Haskell
program is correct. This is a very desirable feature in critical
systems, where a mistake can be fatal or very costly. In the
following paragraphs, a detailed explanation on how this can
be done for the mInverse function is presented.

Fig. 1. CPU use in parallel processing

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:3, 2009

739International Scholarly and Scientific Research & Innovation 3(3) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

3,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

59
62

.p
df

In real life, programs and electronic circuits are not obvious.
Therefore, engineers and computer scientists need Mathemat-
ics to prove that their programs are correct. Let us prove that
mInverse finds the multiplicative inverse of a number, i.e.,
if mInverse d f ==1 and d<f, then there exists d−1 such
that d × d−1 = 1 mod f . As one can see, this property is
the basis of public cryptography, as described in the previous
section.

Function mInverse relies on a loop to find the multiplica-
tive inverse of its first argument. To prove that a loop is correct,
one needs to search for relationships that remain invariable at
each interaction. These relationships are given the name loop
invariants. In the case of the local loop in the mInverse
function, the invariants are:

1) f × x1 + d× x2 = x3
2) f × y1 + d× y2 = y3

Both invariants are true at the beginning of the loop, since
(x1, x2, x3) = (1, 0, f) and (y1, y2, y3) = (0, 1, d). Let us
assume that the invariants are true within iteration n. In this
case, they are true within iteration n + 1 as well. After all,
f × x1n+1 + d× x2n+1 = f × (x1n− q× y1n) + d× (x2n−
q× y2n) = (f ×x1n +d×x2n)− q× (f × y1n +d× y2n) =
x3−q×y3 = x3n+1. The same argument can be used to prove
that, if the relationship is valid for (y1n, y2n, y3n), then it is
also valid for (y1n+1, y2n+1, y3n+1).

The result that we have proven shows that, since the
invariant is true for iteration 0, it is true for iteration 1; since
it is true for iteration 1, it is true for iteration 2; and so on. In
particular, it is true for the last iteration. However, in the last
iteration, y3 = 1, and the second invariant takes the following
form: f × y1 + d× y2 = 1. Then, d× y2 = 1 + (−y1)× f ,
and d× y2 = 1 mod f , which leads to the conclusion that y2
is the multiplicative inverse of d.

VI. SENSORS

The main contribution of this paper is to propose of an
architecture for a network of sensors that can be used in
monitoring medical patient and climate changes.

Since different physiological signals require different ampli-
fications and noise filterings, both the amplifier and the filter
must be programmable.

Figure 3 presents a schematic diagram of a programmable,
5th order, low pass, switched capacitor filter. The clock

controls the corner frequency: fC = fCLK/100. The clock
signal is generated by the pulse width modulation module of
a micro-controller.

In order to produce an example which illustrates the algo-
rithm, a simplified version of the hardware was designed and
built. Figure 2 shows the schematics of the simple processor,
that can be used for data acquisition of temperature time
series and capnograms. The complete system can deal with
the following kinds of signal:

• Electrocardiography (ECG) — acquisition of the electri-
cal activity of the heart over time captured and recorded
by skin electrodes.

• Electroencephalography (EEG) — recording of electrical
activity of firing brain neurons.

• Electromyography (EMG) — recording muscle electrical
activation.

• Thermometry — time series of body or environmental
temperature on a single point of a surface.

• Capnography — monitoring of the partial pressure of
carbon dioxide (CO2) in the respiratory gases. It is used
for patient monitoring during anaesthesia and intensive
care. Figure 4 shows a normal capnography.

The authors of the present paper became interested in
temperature and CO2 measurements during their study of the
contribution of greenhouse gases to the urban heat island,
which is a metropolitan area significantly warmer than its
surroundings. They believe that urban heat islands may have a
negative impact on global warming and climate change. After
designing and building sensors for climatology studies, they
were contacted by medical doctors who were studying the
correlation between global warming and respiratory diseases.
From these interactions, there came the idea of using the same
sensors both for measuring air quality and the respiratory
patterns of medical patients with ailments related to climate
change.

Communication and control of each sensor is performed
by a small computer, as shown in figure 2. A sensor has
hundreds of parameters that one must adjust in order to get the
correct readings. These parameters are stored in an EPROM
memory, inside the sensor microcontroler. Since there is a
relatively small number of times that one can rewrite an

Fig. 2. Micro-controller for thermography and capnography

Fig. 3. Programmable Filter

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:3, 2009

740International Scholarly and Scientific Research & Innovation 3(3) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

3,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

59
62

.p
df

EPROM memory, the microcontroler sends the parameters and
raw data to a training program, hosted in the main computer.
Let us examine the communication program that makes this
process possible.

1 getTData outh n | n<1 = return ()
2 getTData outh n = do
3 tx ∈ sendMessage 1 "t"
4 let tp = filter (> ’ ’) tx
5 rawVal ∈ sendMessage 1 "x"
6 let raw = filter (> ’ ’) rawVal
7 let p= show (hex2dec raw)
8 threadDelay 500000
9 hPutStrLn outh (tp ++ " " ++ p)

10 getTData outh (n-1)

On line 3, the main computer sends a message to the sensors
asking for the local temperature; On line 5, it asks for the
temperature raw value. Of course, the sensor that one wants
to calibrate must have means of measuring a reference value
of the quantity that one needs to adjust. This value of reference
can be obtained from a previously calibrated sensor. Of course,
the first sensor must be adjusted by hand. The program writes
a file containing raw measurements, and values calibrated to
within an acceptable error.

The sensors must learn how to produce correct readings
from collected data. This can be done through evolutionary
computation.

VII. EVOLUTIONARY COMPUTATION

A Genetic Algorithm (GA) is an evolutionary process
of estimating parameters. Genetic Programming (GP) is a
methodology of automatic program generation. Both Genetic
Programming and Genetic Algorithms were inspired by bio-
logical evolution. They evolve through stochastic processes of
change; a few of these processes are explained below:

1) Create generation 0 by random application of program
constructors.

2) Step over successive generations until fit individuals
appear:
(a) Execute each individual program in the population

and calculate its fitness to solve the problem at hand.
(b) Selection — uses a fitness measure to rank the

population.
(c) Survival — high ranked snippets survive into the

next generation.
(d) Crossover — creates offspring by recombining snip-

pets.
(e) Mutation — creates mutant programs through

heuristic search.
Below, there is a program that performs approximation of

data through Bernstein polynomials, in order to calibrate the
sensors.

1 {- ghc gaCap.hs -O2 --make -}
2 {- Execute: gaCap.hs out.txt -}
3 import Data.Array.IO
4 import System.Random
5 import Data.Array
6 import Control.Parallel
7 import Data.Bits
8 import System
9 import Control.Monad.ST

10 import Data.Array.ST
11 import System.IO
12
13 type Sta s = STArray s Int Double
14 type SLD = [(Int, Double)]
15 type AD = Array Int Double
16 type POP= IO (IOArray Int (AD, Double))
17
18 (psz, thr, inf, sup, npar)= (30, 0.01, 0.0, 500.0, 2)
19 (alpha, order, ger) = (0.5, 3, 100)
20
21 main = do
22 let ind= listArray (0, order) [0.0 ..]
23 arr ∈ newArray (1,psz) (ind, 100.0) :: POP
24 args ∈ getArgs
25 case args of
26 [fn] → do
27 contents ∈ readFile fn
28 let dataset= rd (words contents) []
29 xs ∈ rnList (0.0, 1.0)
30 xs0 ∈ gen0 (ind,100.0) dataset arr psz xs
31 ind ∈ readArray arr 1
32 (bb, xs1) ∈

evolve dataset ind ger arr xs0
33 print bb
34 otherwise → putStrLn "e.g. usus: gbVec training.set"
35
36 rd [] acc= acc
37 rd [x] acc= acc
38 rd (x1:x2:xs) acc= rd

xs ((read x1, read x2):acc)
39
40 gen0 (b,fb) s a i xs | i ≤ 1 = do
41 writeArray a i (b,fb)
42 return xs
43 gen0 bfb s a i xs = do
44 let ind = listArray (0, order)
45 [inf + x*(sup-inf) | x ∈

take (order + 1) xs]
46 writeArray a i (ind, fitness s ind)
47 gen0 bfb s a (i-1) (drop (order + 1) xs)

On line 29, an infinite list of random numbers is built to
provide the elements necessary to fill the population vector.
Each pair in the population is a tuple containing a set of
parameters and its fitness.

The gen0 program goes through the population vector,
inserting random generated individuals into the population.
The fitness function (line 65) calculates the error that an
individual makes while estimating a quantity.

48 -- Pascal’s Triangle
49 pascal :: [[Double]]
50 pascal = iterate (λrow →

zipWith (+) ([0.0] ++ row)
51 (row ++

[0.0])) [1.0]
52
53 -- Binomial numbers

Fig. 4. Normal capnography

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:3, 2009

741International Scholarly and Scientific Research & Innovation 3(3) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

3,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

59
62

.p
df

54 bi :: Int → Int → Double
55 bi n m = pascal !! n !! m
56
57 -- Bernstein’s polynomials
58 bernstein :: (Int,Int) → Double → Double
59 bernstein (i,n) t = (bi n i) * (t **

(fromIntegral i)) *
60 ((1.0 - t) ** (fromIntegral (n - i)))
61
62 rnList :: (Double, Double) → IO [Double]
63 rnList r=getStdGen>>=(λx→return(randomRs r x))
64
65 fitness s c = errSum (poly 0 0.0) s 0.0 where
66 poly i p x | i > order = p
67 poly i p x = poly (i+1) (p+(c!i) *

bernstein (i,order) x) x
68 errSum p [] acc = acc
69 errSum p ((x,y):xs) acc =

errSum p xs (acc+(y - p x)ˆ2)

The cross function takes two individuals from the pop-
ulation, and performs a crossover of their genetic contents,
producing an offspring.

70 map2 f p q= listArray (0, order) (loop 0) where
71 loop i | i > order = []
72 loop i = f (p!i) (q!i) : loop (i+1)
73
74 cross (p1,p2) rnl | bounds p1 /= bounds p2 =

(p1, rnl)
75 cross (p1, p2) (r:rnl) =

(offspring, rnl) where
76 offspring = map2 (λ x y → x +

beta*(y-x)) p1 p2
77 beta = -alpha + r * (1.0 + 2.0 * alpha)

The evolve s (b, fb) i pop xs program is a loop with
five arguments: the training set, the best individual found so
far, the generation counter, the population, and an infinite list
of random numbers. It searches out two potential parents from
the population, generates children, and inserts them into the
population if they are fit enough to solve the problem at hand.
The program stops if it finds an individual able to solve the
problem within a given error. If an apt individual is not found
after 100 generations, evolve destroys the whole population,
and starts everything again; the new start, also known as The
Deluge, is shown on lines 113, 114, and 115.

78 best i b pop xs | i > psz= return (b, xs)
79 best i b pop (r:xs) = do
80 (ix, ifit) ∈ readArray pop i
81 (bx, bfit) ∈ readArray pop b
82 if ifit < bfit && r < 0.2
83 then best (i+1) i pop xs
84 else best (i+1) b pop xs
85
86 findworse i i1 pop | i > psz= return i1
87 findworse i i1 pop = do
88 (_, fi) ∈ readArray pop i
89 (_, f1) ∈ readArray pop i1
90 if fi > f1 then findworse (i+1) i pop else
91 findworse (i+1) i1 pop
92
93 mutt s (arr, fm) = runST $ do
94 starr ∈ thaw arr
95 grad ∈ loop (bounds arr) starr []
96 newarr ∈ freeze starr

97 let t= 0.02
98 let m2 = accum (λ c g → c - t*g) newarr grad
99 return (m2, fitness s m2)

100 where
101 loop::(Int, Int)→Sta s→ SLD →ST s SLD
102 loop (i, n) arr acc | i >

n= return $ reverse acc
103 loop (i, n) arr acc = do
104 old ∈ readArray arr i
105 let dx= 0.01
106 writeArray arr i (old+dx)
107 xx ∈ freeze arr
108 let f1 = fitness s xx; writeArray arr i old
109 let g = (f1 - fm) / dx
110 loop (i+1, n) arr ((i, g):acc)
111
112 evolve s (b, fb) i pop xs | fb < thr =

return ((b, fb), xs)
113 evolve s bfb i pop xs | i < 1 = do
114 xs0 ∈ gen0 bfb s pop psz xs
115 evolve s bfb ger pop xs0
116 evolve s b i pop (r:r1:r2:xs) = do
117 xs2 ∈ parents 10 s pop xs
118 (ib, xs5) ∈ best 1 2 pop xs2
119 bb ∈ readArray pop ib
120 evolve s bb (i-1) pop xs5

It was shown that crossover alone can produce degenerated
populations, i.e., populations that don’t evolve towards the
solution of the problem at hand. Therefore, part of the children
must suffer a mutation before insertion into the population. On
lines 78 to 110, one can see the mutation function, together
with two other functions: best and findworse. The best
function finds the fittest individual, i.e., the individual that
finds the solution with the smallest error. In fact, to prevent the
algorithm from becoming trapped in local optima, the best
function may drop the fittest individual in favor of another not
as well suited; the decision to choose a suboptimal individual
is carried out on line 82, and is based on the value of a
random number. A child is inserted into the population if
the findworse function can find a place occupied by an
individual not suited for the job.

121 parents i s pop xs | i < 1 = return xs
122 parents i s pop (r1:r2:xs) = do
123 let i1 = 1+truncate (r1*(fromIntegral psz))
124 let i2 = 1+truncate (r2*(fromIntegral psz))
125 (t1, ft1) ∈ readArray pop i1
126 (t2, ft2) ∈ readArray pop i2
127 let (m1, xs1) = cross (t1, t2) xs
128 let (m2, xs2) = cross (t1, t2) xs1
129 let (im1,f1) = mutt s (m1, fitness s m1)
130 let (im2,f2) = mutt s (m2, fitness s m2)
131 iw1 ∈ findworse 1 2 pop
132 writeArray pop iw1 (im1,f1)
133 iw2 ∈ findworse 1 2 pop
134 writeArray pop iw2 (im2,f2)
135 parents (i-1) s pop xs2

In general, sensors do not output correct results. There-
fore, in order to calibrate a sensor, one needs a data cloud
containing the sensor measurements, and the correspond-
ing correct value. The calibration process builds a function
f::Measurements →Values that minimizes

∑

i

(vi −mi)2

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:3, 2009

742International Scholarly and Scientific Research & Innovation 3(3) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

3,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

59
62

.p
df

where each point (mi, vi) belongs to the data cloud, mi is a
measurement, and vi is the corresponding value.

VIII. MEMETIC PROGRAMMING

Optimization refers to minimizing or maximizing a scalar,
real-valued objective function, by choosing parameters from
within an allowed set. In the present case, the objective
function measures the error of a polynomial expansion that
calibrates a sensor in order to obtain correct measurements
from raw data. In figure 5, reference values are shown as small
filled squares. The calibration model curve, found by a genetic
programming system, is the continuous bold line.

The calibration curve is a series expansion that uses Bern-
stein polynomials as base functions. The authors have used a
similar model in their study of the climatology of F region
zonal plasma drifts over Jicamarca (see [14]). In that study,
they have described the basic properties of Bernstein polyno-
mials briefly. For ready reference, the reader will find the same
description below.

Bernstein[15] polynomials are named after the Ukrainian
mathematician Sergei Bernstein, who used them to prove
the Weierstrass approximation theorem. They can represent
monotone, piecewise smooth functions having left and right
derivatives at every point, without the occurrence of the Gibbs
phenomenon. The Gibbs phenomenon is the peculiar behavior
of the Fourier series of a piecewise continuously differentiable
periodic function at a jump discontinuity; near the jump, the
nth partial sum of the Fourier series shows an overshoot that
does not die out as the frequency increases, but approaches a
finite limit.

As Fejer[14] says, Bernstein polynomials provide global
approximations of data point clouds in contrast to local
approximations given by splines and other popular methods.
They are particularly useful for modeling incomplete and noisy
data sets, which are not well suited for local approximation.

The learning algorithm is based on the calculation and
correction of the error made by the predicting function. The
error of a given set of examples is calculated by the errSum-
function, which implements the expression below, where e is
an example, vc is the predicted value, and v is the given value.

∑

e

(vc(e)− v(e))2

Function mutt updates the weights through the gradient
descent method in such a way as to reduce the error to
a minimum. Gradient descent is an optimization algorithm
that finds a local minimum of a function by taking steps
proportional to the negative of the gradient of the function at
the current point. At each step of the gradient descent method,
the weight is updated according to the following formula:

ωn+1 = ωn − γ�error(ω)

In this formula, if γ > 0 is a small enough number,
error(ωn+1) < error(ωn). If one starts with ω0, the sequence
ω0, ω1, ω2 . . . will converge to a minimum. The minimum will
be reached when the gradient becomes zero (or close to zero,
in practical situations).

If the gradient descent is the only optimization method
used to find the calibration curve, all one can hope for is a
local minimum for the error. The use of genetic programming
prevents the gradient descent to become trapped in local
minima. On the other hand, the gradient descent accelerates
the convergence, that would become very slow in a purely
evolutionary system. This combination of an evolutionary
approach with local improvement procedures for problem
search is called Memetic Algorithm. The idea comes from
a theory by Richard Dawkins, who believes that evolution
is not exclusive to biological systems, but can be applied to
any complex system that exhibits the principles of inheritance,
variation and selection.

IX. CONCLUSIONS

This paper presents a method of bringing interchangeable
parts to computer software. A computer has two subsystems,
hardware and software, where software is by far the most
costly in price and human labor. When hardware becomes
obsolete, one must update software as well. By using a
computer language founded in Mathematics, developers can
be sure that their work will not become obsolete, and can
be adapted to any hardware that technological advances may
produce. The best candidate for a mathematical formal system
that can be used as a programming language is λ-Calculus.

Public cryptography is a good example of software that is
currently used and may well show itself be used in future hard-
ware, since it is based on a modification of Euclid’s algorithm
for finding the greatest common divisor. The algorithm was
designed more than two thousand years ago by the Egyptian
born Greek mathematician Euclid, and was published in a book
edited by Theon of Alexandria and his daughter Hipatia, who
died in the year 415 BC. Nevertheless, this old algorithm is
the basis of modern cryptography. The authors of the present
paper have shown another benefit of a mathematically founded
language: one can prove that the algorithm is correct. In the
example, there is a proof that the modification of the Euclid
algorithm correctly finds the modular inverse of a number.

Designing software that resists obsolescence is especially
desirable in areas where homologation takes a long time, and
is a costly process, such as in medicine. This paper gives exam-
ples of medical instruments with software written in Haskell,
a language based on λ-Calculus. Without measures against

Fig. 5. Normal capnography

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:3, 2009

743International Scholarly and Scientific Research & Innovation 3(3) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

3,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

59
62

.p
df

obsolescence, one is condemned to use vintage hardware in
order to preserve homologated software.

Air traffic control and avionics provide further examples of
areas where obsolescence is a problem. One of the components
of air traffic control is the terminal radar approach control
facilities (TRACOM). As late as 1995, and possibly even today
(2009), some of the busiest TRACONs used a microprocessor
designed around 1980 (see [11]). Costa[12] et al. suggest the
use of a sophisticated documentation system to ease the task of
updating air traffic control systems. However, the best solution
is software that does not require updating; mathematically
founded languages can provide such software.

A fringe benefit of mathematically founded languages is
a set of tools that can prove the correctness of a program,
which stops in due time and delivers the specified result. In
fact, code that can be proved correct is vitally important in
critical applications and becomes the main justification for
programming in λ-Calculus. One can read more about the use
of Haskell in critical applications in [13]; in a sense, medical
instruments like those described in the present paper are also
examples of critical applications.

As for the method used to solve the ergodic system, the
genetic programming algorithm prevents the solution from
becoming trapped in local minima, while the gradient descent
method provides fast convergence.

REFERENCES

[1] J. H. Lienhard. Interchangeable Parts. April 18, 2009.
http://www.uh.edu/engines/epi1252.htm.

[2] J. Hughes. The Computer Journal, ISSN:0010-4620, Volume 32, Issue 2
(April 1989), Pages: 98-107.

[3] A. Church. A set of postulates for the foundation of logic. Annals of
Mathematics, Series 2, 33:346-366, 1932.

[4] A. Church. A note on the Entscheidungsproblem. Journal of Symbolic
Logic, 1:40-41, 1936.

[5] A. Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics, 58:345-363, 1936.

[6] John Backus. A Functional Style and Its Algebra of Programs. Commu-
nications of the ACM. August 1978. Volume 2 i. Number 8.

[7] Moses Schonfinkel. Uber die Bausteine der mathematischen Logik. Math-
ematische Annalen 92, pp. 305-316.

[8] Henk Barendregt, The Impact of the Lambda Calculus in Logic and
Computer Science. The Bulletin of Symbolic Logic, Volume 3, Number
2, June 1997.

[9] P. W. Trinder, K. Hammond, H. W. Loidl and S. Peyton Jones. Algo-
rithm+Strategy= Parallelism. Journal of Functional Programming 1 (1),
January, 1993. Cambridge University Press.

[10] John Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. ISBN-10: 0262111705; ISBN-13: 978-
0262111706. The MIT Press; First Printing edition (1992).

[11] T. S. Perry. In search of the future of air traffic control. IEEE spectrum,
34(8) 18-35.

[12] E. Costa, A. Grings, and M. V. Santos. Documentation Methods for Vi-
sual Languages, in Visual Languages for Interactive Computing. Fernando
Ferry, editor. ISBN 978-1-59904-534-4. IGI Global. 2008.

[13] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch
and S. Winwood. seL4: Formal verification of an OS kernel, Proceedings
of the 22nd ACM Symposium on Operating Systems Principles, Big Sky,
MT, USA, October, 2009.

[14] B. G. Fejer, J. R. Souza, A. S. Santos, and A. E. Costa Pereira.
Climatology of F region zonal plasma drifts over Jicamarca. Journal of
Geophysical Research, Vol. 110, A12310, doi: 10.1029/2005JA011324,
2005.

[15] S. N. Bernstein. Démonstration du théorème de Weierstrass fondée sur
le calcul des probabilités. Comm. Soc. Math. Kharkov, 13, 1-2.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:3, No:3, 2009

744International Scholarly and Scientific Research & Innovation 3(3) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

3,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

59
62

.p
df

